Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 695 - 705
EFFECT OF
DRYING TIMES AND TEMPERATURES ON THE QUALITY OF TRADITIONAL SPICY SAUCE CUBE
(Kesan
Masa dan Suhu Pengeringan Terhadap Kualiti Kiub Sambal Tradisional)
Nur Huda
Mohd Masseri, Norhayati Muhammad*, Nur Fazira Abdul Rahim
Department of Technology and Natural
Resources,
Faculty of Applied Sciences and Technology,
Universiti Tun Hussein Onn Malaysia,
84600 UTHM – Pagoh Campus, Muar, Johor, Malaysia
*Corresponding author: norhayatim@uthm.edu.my
Received: 12 July 2021;
Accepted: 21 August 2021; Published: 29
August 2021
Abstract
Food drying is a food preservation method to
inhibit bacterial, yeast and mold growth through the water removal technique.
This study aims to analyze the effects of different drying temperatures and
durations on the traditional spicy sauce cubes’ qualities (moisture content,
water activity, texture, color, disintegration time and sensory analysis).
Different drying temperatures for the cubes consisted of three different stages
temperatures were used to compare with the control cube’s quality. The
production of traditional spicy sauce cubes involved the preparation of fresh
ingredients, cooked into a paste, drying, grinding the paste into powder and
compacted into a cube molder (3.3×1.5 cm). It was found that the cubes with
high initial temperature had lower moisture content than those with low initial
temperature. The three-stage temperature cubes exhibited a lower water activity
compared to other cubes and had higher hardness and lower fracturability but
their color is still retained. All the traditional cubes had a disintegration
time below 60 seconds which indicated the good quality of cubes. The different
cyclic temperatures regime showed no significant difference to the aftertaste
and overall acceptance among all prepared cubes. Overall, the significant
differences in cubes’ qualities were affected by varying the cyclic drying
temperatures.
Keywords:
traditional spicy sauce cube, cyclic drying temperatures, drying times
Abstrak
Pengeringan
makanan adalah satu kaedah pegawetan makanan untuk mencegah pertumbuhan
bakteria, ragi dan kulat melalui teknik penyingkiran air. Kajian ini bertujuan
untuk menganalisis kesan suhu dan jangka masa pengeringan yang berbeza terhadap
kualiti kiub sambal tradisional (kandungan kelembapan, aktiviti air, tekstur,
warna, masa perlarutan dan penilaian sensori). Suhu pengeringan untuk kiub
sambal tradisional yang terdiri daripada tiga tahap yang berbeza telah
dibandingkan dengan kualiti kiub kawalan. Penghasilan kiub sambal tradisional
merangkumi penyediaan bahan-bahan segar, dimasak menjadi pes, pengeringan dan
pengisaran pes menjadi serbuk dan dipadatkan ke dalam acuan kiub (3.3×1.5 cm).
Kiub sambal tradisional dengan suhu awal pengeringan yang tinggi didapati
mempunyai kandungan kelembapan yang lebih rendah daripada suhu awal pengeringan
yang rendah. Kiub dengan suhu tiga-tahap menunjukkan aktiviti air yang lebih
rendah berbanding dengan kiub-kiub lain serta lebih keras dan tidak mudah
pecah, tetapi warnanya masih dapat dikekalkan. Semua kiub sambal tradisional
mempunyai masa perlarutan di bawah 60 saat yang membuktikan kualiti kiub yang
baik. Kitaran suhu pengeringan yang berbeza menunjukkan tiada perbezaan yang
signifikan terhadap kesan rasa dan penerimaan keseluruhan antara semua kiub
sambal tradisional yang disediakan. Kesimpulannya, perbezaan ketara kualiti
kiub sambal tradisional telah dipengaruhi oleh pelbagai kitaran suhu
pengeringan.
Kata kunci: kiub sambal tradisional, kitaran suhu
pengeringan, masa pengeringan
References
1.
Hui, Y. H., Ghazala, S.,
Graham, M., Murrell, K. D. and Nip, W. K. (2003). Canned chilli sauce. Handbook
of vegetable preservation and processing. CRC Press, United States: pp.
162-164.
2.
Heldman, D. R. and
Hartel, R. W. (1997). Principles of food processing. Chapman and Hall, New
York: pp. 309-339.
3.
Jumah, R., Banat, F.,
Al-Asheh S. and Hammad, S. (2004). Drying kinetics of tomato paste. International Journal of Food Properties,
7(2): 253-259.
4.
Beedie, M. (1995). Energy
savings-a question of quality. South
Africa Journal Food Science Technology, 48(3): 14-16.
5.
Paula, A. M. and
Conti-Silva, A. C. (2014). Texture profile and correlation between sensory and
instrumental analyses on extruded snacks. Journal
of Food Engineering, 121: 9-14.
6.
Wiriya, P., Paiboon, T.
and Somchart, S. (2009). Effect of drying air temperature and chemical
pretreatments on quality of dried chilli. International
Food Research Journal, 16: 441-454.
7.
Association of Official
Analytical Chemists (1984). Official
methods of analysis 14th edition. Association of Official
Analytical Chemists. Washington, D.C.
8.
Ismail, N. and Sahibon,
N. S., (2018). Evaluation of bouillon cube prepared with the addition of
threadfin bream (Nemipterus japonicus)
hydrolysate. Journal of Tropical
Agricultural Science, 41(3):1315-1328.
9.
Herreid, R. M. and
Lippert, V. E. (2000). Method for making fast dissolving bouillon cubes. United
States. Patent No: 6126979.
10.
Sharif, M. K., Butt, M.
S. Sharif, H. R. and Nasir, M. (2017). Sensory evaluation and consumer
acceptability. In book: Handbook of food science and technology. Wiley, United
Kingdom: pp. 362-386.
11.
Ahmad, N., Shafi’i, S.
N., Hassan, N. H., Rajab, A. and Othman, A. (2018). Physicochemical and
sensorial properties of optimised roselle-pineapple leather. Malaysian Journal of Analytical Sciences,
22(1): 35-44.
12.
Chua, K. J., Chou, S. K.,
Ho, J. C., Mujumdar, A. S. and Hawlader, M. N. A. (2000). Cyclic temperature drying of guava
pieces: effect on moisture and ascorbic acid contents. Food and Bioproducts Processing, 78(2): 72-78.
13.
Sandulachi, E. (2012).
Water activity concept and its role in food preservation. In chapter 3 -
General considerations for preservation of fruits and vegetables: pp. 41-48.
14.
Smorenburg, H.E, and
Yamson, T.A. (2009). Fortified bouillon cube. Patent No: WO2009068378A1.
15.
Gupta, S., and Bongers,
P. (2011). Bouillon cube process design by applying product driven process
synthesis. Chemical Engineering and
Processing: Process Intensification, 50(1): 9‑15.
16.
Ansari, S., Maftoon-Azad,
N., Hosseini, E., Farahnaky, A. and Asadi, G. (2014). Modeling the rehydration
behavior of dried figs. Journal of
Agricultural Science and Technology, 17(1): 133-144.
17.
Lee, D. S., Chung, S. K.,
Kim, H. K. and Yam, K. L. (1991). Nonenzymatic browning in dried red pepper
products. Journal of Food Quality, 14(2):
153-163.
18.
Gupta, P., Ahmed, J.,
Shivhare, U. S. and Raghavan, G. S. V. (2002). Drying characteristics of red
chilli. Drying Technology, 20(10):
1975-1987.
19.
Sigge, G. O., Hansmann,
C. F. and Joubert, E. (1999). Optimizing the dehydration conditions of green
bell peppers (Capsicum annuum L.):
Quality criteria. Journal of Food
Quality, 22: 439-452.
20.
Markl, D. and Zeitler, J.
(2017). A review of disintegration mechanisms and measurement techniques. Pharmaceutical Research, 34(5): 890–917.
21.
Alyami, H., Koner, J.,
Dahmash, E., Bowen, J., Terry, D. and Afzal, R. (2017). Microparticle surface
layering through dry coating: Impact of moisture content and process parameters
on the properties of orally disintegrating tablets. Journal of Pharmacy and Pharmacology, 69(7): 807-822.
22.
Purkayastha, M. D., Nath,
A., Deka, B. C. and Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of Food Science Technology, 50(4): 642-653.