Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 678 - 694
PHYTOCHEMICAL
INSIGHTS ON PALM OILS AND EXTRA VIRGIN OLIVE OIL
(Tinjauan Fitokimia Minyak Sawit dan Pati Minyak Zaitun)
Noor Idayu Tahir1*, Nurul Liyana Rozali1, Nadirah
Zakaria2, Abrizah Othman1, Umi Salamah Ramli1
1Advanced Biotechnology and Breeding
Centre (ABBC),
Malaysian
Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
2Faculty of Applied Sciences,
Universiti
Teknologi MARA Kampus Arau, 02600 Perlis, Malaysia
*Corresponding
author: idayu@mpob.gov.my
Received: 20 July 2021; Accepted: 20 August 2021;
Published: 29 August 2021
Abstract
Plants are a major source of oils for food and
oleochemicals. Oftentimes, plant oils are highly processed prior to consumer
access to achieve certain criteria of appearance and adaptability at the
expense of valuable natural components or phytochemicals. Palm oil is refined
and fractionated into various end products and is one of the most globally
consumed plant oils due to its versatility. In comparison, extra virgin olive
oil (EVOO) is prized for its phytonutrients. Refined palm cooking oils,
laboratory cold-pressed palm oil (CPPO) and EVOO were subjected to
phytochemical analysis to detect the presence of phenolics and flavonoids and to
assess their antioxidant activities. The extracts from oils with minimum
treatment such as CPPO and EVOO showed higher phytochemicals presence of total
flavonoid and phenolic contents, consistent with their chemical profiles
observed in the liquid- and gas chromatography-mass spectrometry (LC-MS and
GC-MS) analyses. The finding calls for more exploration on the palm oil
phytochemical constituents and ultimately the enhancement of refining processes
to seek balance between the industrial feasibility and the availability of
valuable phytochemicals with potential health benefit.
Keywords:
phytochemicals, palm oil, extra virgin olive
oil, liquid and gas chromatography, mass spectrometry
Abstrak
Tumbuhan
adalah sumber utama minyak untuk makanan dan bahan oleokimia. Sering kali,
ianya menjalani pelbagai pemprosesan sebelum menemui pengguna untuk mencapai
kriteria dan penampilan produk hiliran. Faktor ini menyebabkan hilangnya
komponen semula jadi atau bahan fitokimia yang berharga daripada minyak
tumbuhan tersebut. Minyak sawit ditapis dan mengalami pemeringkatan sebelum
menjadi pelbagai produk akhir dan merupakan salah satu minyak tumbuhan yang
paling banyak digunakan di dunia kerana ciri serba gunanya. Sebagai
perbandingan, pati minyak zaitun (EVOO) mempunyai permintaan tinggi kerana
kandungan fitonutriennya. Minyak masak sawit diproses, minyak dari perahan
sejuk dari mesokarpa sawit (CPPO) dan EVOO dianalisis secara fitokimia untuk
mengesan kehadiran fenolik dan flavonoid dan menilai aktiviti antioksidan
mereka. Ekstrak dari minyak dengan proses yang minimum seperti CPPO dan EVOO
menunjukkan kehadiran fitokimia flavonoid dan fenolik yang lebih tinggi,
selaras dengan profil kimia mereka melalui analisis kromatografi cecair dan gas
yang digabungkan dengan spektrometri jisim (LC-MS dan GC-MS). Penemuan ini
menggalakkan lebih banyak penerokaan terhadap bahan fitokimia sawit dan
seterusnya penambahbaikkan berterusan terhadap pemprosesan ninyak sawit untuk
mendapatkan keseimbangan di antara kehendak industri dan keperluan bahan
fitokimia yang bermanfaat untuk kesihatan pengguna.
Kata kunci: bahan fitokimia, minyak sawit, pati minyak
zaitun, kromatografi cecair dan gas, spektrometer jisim
References
1.
Holopainen, J. K.,
Kivimäenpää, M. and Julkunen-Tiitto, R. (2018). New light for phytochemicals. Trends
in Biotechnology, 36: 7-10.
2.
Cotes, S., Cotuá, J. and
Muńoz, A. (2018). Calculated antioxidant activity of selected phenolic
compounds. Canadian Journal of Chemistry, 96: 345-350.
3.
Kushairi, A.,
Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., ZanalBidin, M. N. I.,
Ghazali, R., Subramaniam, V., Sundram, S. and Parveez G. K. A. (2019). Oil palm
economic performance in Malaysia and R&D progress in 2018. Journal of
Oil Palm Research, 31: 165-194.
4.
Loganathan, R.,
Subramaniam, K. M., Radhakrishnan, A. K., Choo, Y. M. and Teng, K. T. (2017).
Health-promoting effects of red palm oil: evidence from animal and human
studies. Nutrition Reviews, 75: 98-113.
5.
Abdullah, F., Ismail, R.,
Ghazali, R. and Idris, R. (2018). Total phenolic contents and antioxidant
activity of palm oils and palm kernel oils at various refining processes. Journal
of Oil Palm Research, 30: 682-692.
6.
Rizwan, S., Benincasa,
C., Mehmood, K., Anjum, S., Mehmood, Z., Alizai, G. H., Azam, M., Perri, E.,
Sajjad, A. (2019). Fatty acids and phenolic profiles of extra virgin olive oils
from selected Italian cultivars introduced in southwestern province of
Pakistan. Journal of Oleo Science, 68: 33-43.
7.
Syarifah-Noratiqah, S.
B., Zulfarina, M. S., Ahmad, S. U., Fairus, S. and Naina-Mohamed, I. (2019).
The pharmacological potential of oil palm phenolics (OPP) individual
components. International Journal of Medical Sciences, 16(5): 711-719.
8.
Selby-Pham, S. N. B.,
Siow, L. F. and Bennett, L. E. (2020). Characterising absorption and
health-related properties of phytochemicals extracted from Malaysian palm fruit
biomass after oil extraction. Food Function, 11: 907-920.
9.
Zain, M. S. C., Lee, S.
Y., Sarian, M. N., Fakurazi, S. and Shaari, K. (2020). In vitro wound healing
potential of flavonoid C-glycosides from oil palm (Elaeis guineensis
Jacq.) leaves on 3T3 fibroblast cells. Antioxidants, 9: 326.
10.
Xiu-Qin, L., Chao, J.,
Yan-Yan, S., Min-Li, Y. and Xiao-Gang, C. (2009). Analysis of synthetic
antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food
Chemistry, 113: 692-700.
11.
Atawodi, S. E., Yusufu,
L. M., Atawodi, J. C., Asuku, O. and Yakubu, O. E. (2011). Phenolic compounds
and antioxidant potential of Nigerian red palm oil (Elaeis guineensis). International
Journal of Biology, 3: 153-161.
12.
Raaman, N. (2006).
Phytochemical Techniques. New India Publishing Agency, India: pp. 19-23.
13.
Gul, R., Jan, S. U.,
Faridullah, S., Sherani, S. and Jahan, N. (2017). Preliminary phytochemical
screening, quantitative analysis of alkaloids and antioxidant activity of crude
plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific
World Journal, 2017: 5873648.
14.
Usman, H., Abdulrahman,
F. I. and Usman, A. (2009). Qualitative phytochemical screening and in vitro
antimicrobial effects of methanol stem bark extract of Ficus thonningii
(Moraceae). African Journal of Traditional, Complementary and Alternative
Medicines, 6(3): 289-295.
15.
Aryal, S., Baniya, M. K.,
Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. (2019). Total phenolic
content, flavonoid content and antioxidant potential of wild vegetables from
Western Nepal. Plants, 8: 1-12.
16.
Dudonne, S., Vitrac, X.,
Coutiere, P., Woillez, M. and Merillon, J. M. (2009). Comparative study of
antioxidant properties and total phenolics content of 30 plant extract of
industrial interest using DPPH, ABTS, FRAP, SOD and ORAC assays. Journal of
Agricultural and Food Chemistry, 57(5): 1768-1774.
17.
Garcia, E. J., Oldoni, T.
L. C., De Alencar, S. M., Reis, A., Loguercio, A. D. and Grande, R. H. M.
(2012). Antioxidant activity by DPPH assay of potential solutions to be applied
on bleached teeth. Brazilian Dental Journal, 23: 22-27.
18.
Shams-Nateri, A. (2010).
Prediction of dye concentrations in a three-component dye mixture solution by a
PCA-derivative spectrophotometry technique. Color Research & Application,
35(1): 29-33.
19.
Liigand, P., Kaupmees,
K., Haav, K., Liigand, J., Leito, I., Girod, M., Antoine, R. and Kruve, A.
(2017). Think negative: finding the best electrospray ionization/MS mode for
your analyte. Analytical Chemistry, 89: 5665-5668.
20.
Hidalgo, M.,
Sánchez-Moreno, C. and De Pascual-Teresa, S. (2010). Flavonoid-flavonoid
interaction and its effect on their antioxidant activity. Food Chemistry,
121: 691-696.
21.
Procházková, D., Bouová,
I., and Wilhelmová, N. (2011). Antioxidant and prooxidant properties of
flavonoids. Fitoterapia, 82: 513-523.
22.
Werner, E., Heilier, J.
F., Ducruix, C., Ezan, E., Junot, C. and Tabet, J. C. (2008). Mass spectrometry
for the identification of the discriminating signals from metabolomics: current
status and future trends. Journal of Chromatography B, 871(2): 143-63.
23.
De Vijlder, T.,
Valkenborg, D., Lemičre, F., Romijn, E. P., Laukens, K. and Cuyckens, F.
(2018). A tutorial in small molecule identification via electrospray
ionization-mass spectrometry: The practical art of structural elucidation. Mass
Spectrometry Review, 37: 607-629.
24.
Wang, X., Zhang, A.,
Zhou, X., Liu, Q., Nan, Y., Guan, Y., Kong, L., Han, Y., Sun, H. and Yan, G.
(2016). An integrated chinmedomics strategy for discovery of effective
constituents from traditional herbal medicine. Scientific Reports, 6:
18997.
25.
Zoeller, M., Stingl, N.,
Krischke, M., Fekete, A., Waller, F., Berger, S. and Mueller, M. J. (2012).
Lipid profiling of the Arabidopsis hypersensitive response reveals specific
lipid peroxidation and fragmentation processes: Biogenesis of pimelic and
azelaic acid. Plant Physiology, 160: 365-378.
26.
Zhou, Y. S., Gu, C. M.
and Gu, H. (2012). Supercritical CO2 extraction of tea seed oil from
Camellia seeds and composition analysis of tea seed oil extracts. Advanced
Materials Research, 538-541: 2372-2376.
27.
De Ferron, P., Thibon,
C., Shinkaruk, S., Darriet, P., Allamy, L. and Pons, A. (2020). Aromatic
potential of Bordeaux grape cultivars: Identification and assays on
4-oxononanoic acid, a γ-nonalactone precursor. Journal of Agricultural
and Food Chemistry, 68(47): 13344-13352.
28.
Chen, G., Li, X., Saleri,
F. and Guo, M. (2016). Analysis of flavonoids in Rhamnus davurica and
its antiproliferative activities. Molecules, 21: 1-14.
29.
Shen, S., Wang, J., Chen,
X., Liu, T., Zhuo, Q. and Zhang, S. (2019). Evaluation of cellular antioxidant
components of honeys using UPLC-MS/MS and HPLC-FLD based on the quantitative
composition-activity relationship. Food Chemistry, 293: 169-177.
30.
Olmo-García, L., Kessler,
N., Neuweger, H., Wendt, K., Olmo-Peinado, J. M., Fernández-Gutiérrez, A.,
Baessmann, C. and Carrasco-Pancorbo, A. (2018). Unravelling the distribution of
secondary metabolites in Oleae uropaea L.: Exhaustive characterization
of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS
and GC-APCI-MS). Molecules, 23(10): 2419.
31.
Choi, H. G., Park, Y. M.,
Lu, Y., Chang, H. W., Na, M. And Lee S. H. (2012). Inhibition of prostaglandin
D2 production by trihydroxy fatty acids isolated from Ulmus davidiana
var. japonica. Phytotherapy Research 27: 1376-1380.
32.
Wang, D., Liang, J.,
Yang, W., Hou, J., Yang, M., Da, J., Wang, Y., Jiang, B., Liu, X., Wu, W. and
Guo, D. (2014). HPLC/qTOF-MS-oriented characteristic components data set and
chemometric analysis for the holistic quality control of complex TCM
preparations: Niuhuang Shangqing pill as an example. Journal of
Pharmaceutical and Biomedical Analysis, 89: 130-141.
33.
Li, F., Zhang, Y., Wei,
X., Song, C., Qiao, M. and Zhang, H. (2016). Metabolic profiling of Shu-Yu
capsule in rat serum based on metabolic fingerprinting analysis using
HPLC-ESI-MSn. Molecular Medicine Reports, 13: 4191-4204.
34.
Halake, K., Birajdar, M.
and Lee, J. (2016). Structural implications of polyphenolic antioxidants.
Journal of Industrial and Engineering Chemistry, 35: 1-7.
35.
Sarian, M. N., Ahmed, Q.
U., Mat Soad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad,
S. N. A., Khatib, A. and Latip, J. (2017). Antioxidant and antidiabetic effects
of flavonoids: a structure-activity relationship based study. BioMed
Research International, 2017: 1-14.
36.
Chen, L., Teng, H., Xie,
Z., Cao, H., Cheang W. S., Skalicka-Woniak, K., Georgiev, M. I. and Xiao, J.
(2018). Modifications of dietary flavonoids towards improved bioactivity: An
update on structure-activity relationship. Critical Reviews in Food Science
and Nutrition, 58: 513-527.
37.
Levandi, T., Püssa, T.,
Vaher, M., Toomik, P. and Kaljurand, M. (2009). Oxidation products of free
polyunsaturated fatty acids in wheat varieties. European Journal of Lipid
Science and Technology, 111: 715-722.
38.
Hübke, H., Garbe, L. A.
and Tressl, R. (2005). Characterization and quantification of free and
esterified 9- and 13-hydroxyoctadecadienoic acids (HODE) in barley, germinating
barley, and finished malt. Journal of Agricultural and Food Chemistry,
53(5): 1556-1562.
39.
Holková, I., Rauová, D., Mergová,
M., Bezáková, L. and Miku, P. (2019). Purification and product
characterization of lipoxygenase from opium poppy cultures (Papaver
somniferum L.). Molecules 24(23): 4268.
40.
Horai, H., Arita, M.,
Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S.,
Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada,
Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi,
H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T.,
Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K. and
Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral
data for life sciences. Journal of Mass Spectrometry, 45(7): 703-14.
41.
Baker, P. R. S., Armando,
A. M., Campbell, J. L., Quehenberger, O. and Dennis, E. A. (2014).
Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion
mobility spectrometry, and mass spectrometric separation strategies. Journal
of Lipid Research, 55: 2432-2442.
42.
Mok, H. J., Lee, J. W.,
Bandu, R., Kang, H. S., Kim, K. and Kim, K. P. (2016). A rapid and sensitive
profiling of free fatty acids using liquid chromatography electrospray
ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical
derivatization. RSC Advances 6: 32130-32139.
43.
Mazzotti, F.,
Benabdelkamel, H., Di Donna, L., Maiuolo, L., Napoli, A. and Sindona G. (2012).
Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry
and isotope dilution method. Food Chemistry, 135: 1006-1010.
44.
Bartella, L., Mazzotti,
F., Napoli, A., Sindona, G. and Di Donna, L. (2018). A comprehensive evaluation
of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil by microwave-assisted
hydrolysis and HPLC-MS/MS. Analytical and Bioanalytical Chemistry, 410:
2193-2201.
45.
Martini, S., Cavalchi,
M., Conte, A. and Tagliazucchi, D. (2018). The paradoxical effect of
extra-virgin olive oil on oxidative phenomena during in vitro co-digestion with
meat. Food Research International, 109: 82-90.
46.
Angelis, A., Antoniadi,
L., Stathopoulos, P., Halabalaki, M. and Skaltsounis, L. A. (2018).
Oleocanthalic and oleaceinic acids: New compounds from extra virgin olive oil
(EVOO). Phytochemistry Letters, 26: 190e194.
47.
Kanakis, P., Termentzi,
A., Michel, T., Gikas, E., Halabalaki, M. And Skaltsounis, A. (2013). From
olive drupes to olive oil. An HPLC-Orbitrap-based qualitative and quantitative
exploration of olive key metabolites. Planta Medica, 79: 1576-1587.
48.
Sánchez de Medina, V.,
Miho, H., Melliou, E., Magiatis, P., Priego-Capote, F. and Luque de Castro, M.
D. (2017). Quantitative method for determination of oleocanthal and oleacein in
virgin olive oils by liquid chromatography-tandem mass spectrometry. Talanta,
162: 24-31.
49.
Li, H., Yao, W., Liu, Q.,
Xu, J., Bao, B., Shan, M., Cao, Y., Cheng, F., Ding, A. and Zhang, L. (2017).
Application of UHPLC-ESI-Q-TOF-MS to identify multiple constituents in
processed products of the herbal medicine Ligustri Lucidi Fructus. Molecules
22: 1-14.
50.
Luque-Muńoz, A., Tapia,
R., Haidour, A., Justicia, J. and Cuerva, J. M. (2019). Direct determination of
phenolic secoiridoids in olive oil by ultra-high performance liquid
chromatography-triple quadruple mass spectrometry analysis. Scientific
Reports, 9: 15545.
51.
Sanz, M., Fernández de
Simón, B., Cadahía, E., Esteruelas, E., Muńoz, A. M., Hernández, T., Estrellac,
I. and Pinto, E. (2012). LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus
excelsior L. and F. americana L.) heartwood. Effect of toasting
intensity at cooperage. Journal of Mass Spectrometry, 47: 905-918.
52.
Ansari, E., Karami, A.
and Ebrahimie, E. (2019). Isolation of 2-phenylethanol biosynthesis related
gene and developmental patterns of emission of scent compounds in Persian musk
rose (Rosa moschata Herrm.). Biocatalysis and Agricultural
Biotechnology, 19: 1-6.
53.
Garcia-Bermudez, J.,
Baudrier, L., Bayraktar, E. C., Shen, Y., La, K., Guarecuco, R., Yucel, B.,
Fiore, D., Tavora, B., Freinkman, E., Chan, S. H., Lewis, C., Min, W.,
Inghirami, G., Sabatini, D. M. and Birsoy, K. (2019). Squalene accumulation in
cholesterol auxotrophic lymphomas prevents oxidative cell death. Natur,e
567: 118-122.
54.
Prasad, K. (2019).
Importance of flaxseed and its components in the management of hypertension. International
Journal of Angiology, 28: 153-160.