Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 678 - 694

 

 

 

 

PHYTOCHEMICAL INSIGHTS ON PALM OILS AND EXTRA VIRGIN OLIVE OIL

 

(Tinjauan Fitokimia Minyak Sawit dan Pati Minyak Zaitun)

 

Noor Idayu Tahir1*, Nurul Liyana Rozali1, Nadirah Zakaria2, Abrizah Othman1, Umi Salamah Ramli1

 

1Advanced Biotechnology and Breeding Centre (ABBC),

Malaysian Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA Kampus Arau, 02600 Perlis, Malaysia

 

*Corresponding author:  idayu@mpob.gov.my

 

 

Received:  20 July 2021; Accepted: 20 August 2021; Published:  29 August 2021

 

 

Abstract

Plants are a major source of oils for food and oleochemicals. Oftentimes, plant oils are highly processed prior to consumer access to achieve certain criteria of appearance and adaptability at the expense of valuable natural components or phytochemicals. Palm oil is refined and fractionated into various end products and is one of the most globally consumed plant oils due to its versatility. In comparison, extra virgin olive oil (EVOO) is prized for its phytonutrients. Refined palm cooking oils, laboratory cold-pressed palm oil (CPPO) and EVOO were subjected to phytochemical analysis to detect the presence of phenolics and flavonoids and to assess their antioxidant activities. The extracts from oils with minimum treatment such as CPPO and EVOO showed higher phytochemicals presence of total flavonoid and phenolic contents, consistent with their chemical profiles observed in the liquid- and gas chromatography-mass spectrometry (LC-MS and GC-MS) analyses. The finding calls for more exploration on the palm oil phytochemical constituents and ultimately the enhancement of refining processes to seek balance between the industrial feasibility and the availability of valuable phytochemicals with potential health benefit.

 

Keywords:  phytochemicals, palm oil, extra virgin olive oil, liquid and gas chromatography, mass spectrometry

 

Abstrak

Tumbuhan adalah sumber utama minyak untuk makanan dan bahan oleokimia. Sering kali, ianya menjalani pelbagai pemprosesan sebelum menemui pengguna untuk mencapai kriteria dan penampilan produk hiliran. Faktor ini menyebabkan hilangnya komponen semula jadi atau bahan fitokimia yang berharga daripada minyak tumbuhan tersebut. Minyak sawit ditapis dan mengalami pemeringkatan sebelum menjadi pelbagai produk akhir dan merupakan salah satu minyak tumbuhan yang paling banyak digunakan di dunia kerana ciri serba gunanya. Sebagai perbandingan, pati minyak zaitun (EVOO) mempunyai permintaan tinggi kerana kandungan fitonutriennya. Minyak masak sawit diproses, minyak dari perahan sejuk dari mesokarpa sawit (CPPO) dan EVOO dianalisis secara fitokimia untuk mengesan kehadiran fenolik dan flavonoid dan menilai aktiviti antioksidan mereka. Ekstrak dari minyak dengan proses yang minimum seperti CPPO dan EVOO menunjukkan kehadiran fitokimia flavonoid dan fenolik yang lebih tinggi, selaras dengan profil kimia mereka melalui analisis kromatografi cecair dan gas yang digabungkan dengan spektrometri jisim (LC-MS dan GC-MS). Penemuan ini menggalakkan lebih banyak penerokaan terhadap bahan fitokimia sawit dan seterusnya penambahbaikkan berterusan terhadap pemprosesan ninyak sawit untuk mendapatkan keseimbangan di antara kehendak industri dan keperluan bahan fitokimia yang bermanfaat untuk kesihatan pengguna.

 

Kata kunci:  bahan fitokimia, minyak sawit, pati minyak zaitun, kromatografi cecair dan gas, spektrometer jisim

 

References

1.      Holopainen, J. K., Kivimäenpää, M. and Julkunen-Tiitto, R. (2018). New light for phytochemicals. Trends in Biotechnology, 36: 7-10.

2.      Cotes, S., Cotuá, J. and Muńoz, A. (2018). Calculated antioxidant activity of selected phenolic compounds. Canadian Journal of Chemistry, 96: 345-350.

3.      Kushairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., ZanalBidin, M. N. I., Ghazali, R., Subramaniam, V., Sundram, S. and Parveez G. K. A. (2019). Oil palm economic performance in Malaysia and R&D progress in 2018. Journal of Oil Palm Research, 31: 165-194.

4.      Loganathan, R., Subramaniam, K. M., Radhakrishnan, A. K., Choo, Y. M. and Teng, K. T. (2017). Health-promoting effects of red palm oil: evidence from animal and human studies. Nutrition Reviews, 75: 98-113.

5.      Abdullah, F., Ismail, R., Ghazali, R. and Idris, R. (2018). Total phenolic contents and antioxidant activity of palm oils and palm kernel oils at various refining processes. Journal of Oil Palm Research, 30: 682-692.

6.      Rizwan, S., Benincasa, C., Mehmood, K., Anjum, S., Mehmood, Z., Alizai, G. H., Azam, M., Perri, E., Sajjad, A. (2019). Fatty acids and phenolic profiles of extra virgin olive oils from selected Italian cultivars introduced in southwestern province of Pakistan. Journal of Oleo Science, 68: 33-43.

7.      Syarifah-Noratiqah, S. B., Zulfarina, M. S., Ahmad, S. U., Fairus, S. and Naina-Mohamed, I. (2019). The pharmacological potential of oil palm phenolics (OPP) individual components. International Journal of Medical Sciences, 16(5): 711-719.

8.      Selby-Pham, S. N. B., Siow, L. F. and Bennett, L. E. (2020). Characterising absorption and health-related properties of phytochemicals extracted from Malaysian palm fruit biomass after oil extraction. Food Function, 11: 907-920.

9.      Zain, M. S. C., Lee, S. Y., Sarian, M. N., Fakurazi, S. and Shaari, K. (2020). In vitro wound healing potential of flavonoid C-glycosides from oil palm (Elaeis guineensis Jacq.) leaves on 3T3 fibroblast cells. Antioxidants, 9: 326.

10.   Xiu-Qin, L., Chao, J., Yan-Yan, S., Min-Li, Y. and Xiao-Gang, C. (2009). Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chemistry, 113: 692-700.

11.   Atawodi, S. E., Yusufu, L. M., Atawodi, J. C., Asuku, O. and Yakubu, O. E. (2011). Phenolic compounds and antioxidant potential of Nigerian red palm oil (Elaeis guineensis). International Journal of Biology, 3: 153-161.

12.   Raaman, N. (2006). Phytochemical Techniques. New India Publishing Agency, India: pp. 19-23.

13.   Gul, R., Jan, S. U., Faridullah, S., Sherani, S. and Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Scientific World Journal, 2017: 5873648.

14.   Usman, H., Abdulrahman, F. I. and Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African Journal of Traditional, Complementary and Alternative Medicines, 6(3): 289-295.

15.   Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8: 1-12.

16.   Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M. and Merillon, J. M. (2009). Comparative study of antioxidant properties and total phenolics content of 30 plant extract of industrial interest using DPPH, ABTS, FRAP, SOD and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5): 1768-1774.

17.   Garcia, E. J., Oldoni, T. L. C., De Alencar, S. M., Reis, A., Loguercio, A. D. and Grande, R. H. M. (2012). Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Brazilian Dental Journal, 23: 22-27.

18.   Shams-Nateri, A. (2010). Prediction of dye concentrations in a three-component dye mixture solution by a PCA-derivative spectrophotometry technique. Color Research & Application, 35(1): 29-33.

19.   Liigand, P., Kaupmees, K., Haav, K., Liigand, J., Leito, I., Girod, M., Antoine, R. and Kruve, A. (2017). Think negative: finding the best electrospray ionization/MS mode for your analyte. Analytical Chemistry, 89: 5665-5668.

20.   Hidalgo, M., Sánchez-Moreno, C. and De Pascual-Teresa, S. (2010). Flavonoid-flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121: 691-696.

21.   Procházková, D., Boušová, I., and Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82: 513-523.

22.   Werner, E., Heilier, J. F., Ducruix, C., Ezan, E., Junot, C. and Tabet, J. C. (2008). Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. Journal of Chromatography B, 871(2): 143-63.

23.   De Vijlder, T., Valkenborg, D., Lemičre, F., Romijn, E. P., Laukens, K. and Cuyckens, F. (2018). A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrometry Review, 37: 607-629.

24.   Wang, X., Zhang, A., Zhou, X., Liu, Q., Nan, Y., Guan, Y., Kong, L., Han, Y., Sun, H. and Yan, G. (2016). An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine. Scientific Reports, 6: 18997.

25.   Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S. and Mueller, M. J. (2012). Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: Biogenesis of pimelic and azelaic acid. Plant Physiology, 160: 365-378.

26.   Zhou, Y. S., Gu, C. M. and Gu, H. (2012). Supercritical CO2 extraction of tea seed oil from Camellia seeds and composition analysis of tea seed oil extracts. Advanced Materials Research, 538-541: 2372-2376.

27.   De Ferron, P., Thibon, C., Shinkaruk, S., Darriet, P., Allamy, L. and Pons, A. (2020). Aromatic potential of Bordeaux grape cultivars: Identification and assays on 4-oxononanoic acid, a γ-nonalactone precursor. Journal of Agricultural and Food Chemistry, 68(47): 13344-13352.

28.   Chen, G., Li, X., Saleri, F. and Guo, M. (2016). Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules, 21: 1-14.

29.   Shen, S., Wang, J., Chen, X., Liu, T., Zhuo, Q. and Zhang, S. (2019). Evaluation of cellular antioxidant components of honeys using UPLC-MS/MS and HPLC-FLD based on the quantitative composition-activity relationship. Food Chemistry, 293: 169-177.

30.   Olmo-García, L., Kessler, N., Neuweger, H., Wendt, K., Olmo-Peinado, J. M., Fernández-Gutiérrez, A., Baessmann, C. and Carrasco-Pancorbo, A. (2018). Unravelling the distribution of secondary metabolites in Oleae uropaea L.: Exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules, 23(10): 2419.

31.   Choi, H. G., Park, Y. M., Lu, Y., Chang, H. W., Na, M. And Lee S. H. (2012). Inhibition of prostaglandin D2 production by trihydroxy fatty acids isolated from Ulmus davidiana var. japonica. Phytotherapy Research 27: 1376-1380.

32.   Wang, D., Liang, J., Yang, W., Hou, J., Yang, M., Da, J., Wang, Y., Jiang, B., Liu, X., Wu, W. and Guo, D. (2014). HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example. Journal of Pharmaceutical and Biomedical Analysis, 89: 130-141.

33.   Li, F., Zhang, Y., Wei, X., Song, C., Qiao, M. and Zhang, H. (2016). Metabolic profiling of Shu-Yu capsule in rat serum based on metabolic fingerprinting analysis using HPLC-ESI-MSn. Molecular Medicine Reports, 13: 4191-4204.

34.   Halake, K., Birajdar, M. and Lee, J. (2016). Structural implications of polyphenolic antioxidants. Journal of Industrial and Engineering Chemistry, 35: 1-7.

35.   Sarian, M. N., Ahmed, Q. U., Mat So’ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Syed Mohamad, S. N. A., Khatib, A. and Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: a structure-activity relationship based study. BioMed Research International, 2017: 1-14.

36.   Chen, L., Teng, H., Xie, Z., Cao, H., Cheang W. S., Skalicka-Woniak, K., Georgiev, M. I. and Xiao, J. (2018). Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Critical Reviews in Food Science and Nutrition, 58: 513-527.

37.   Levandi, T., Püssa, T., Vaher, M., Toomik, P. and Kaljurand, M. (2009). Oxidation products of free polyunsaturated fatty acids in wheat varieties. European Journal of Lipid Science and Technology, 111: 715-722.

38.   Hübke, H., Garbe, L. A. and Tressl, R. (2005). Characterization and quantification of free and esterified 9- and 13-hydroxyoctadecadienoic acids (HODE) in barley, germinating barley, and finished malt. Journal of Agricultural and Food Chemistry, 53(5): 1556-1562.

39.   Holková, I., Rauová, D., Mergová, M., Bezáková, L. and Mikuš, P. (2019). Purification and product characterization of lipoxygenase from opium poppy cultures (Papaver somniferum L.). Molecules 24(23): 4268.

40.   Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K. and Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7): 703-14.

41.   Baker, P. R. S., Armando, A. M., Campbell, J. L., Quehenberger, O. and Dennis, E. A. (2014). Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. Journal of Lipid Research, 55: 2432-2442.

42.   Mok, H. J., Lee, J. W., Bandu, R., Kang, H. S., Kim, K. and Kim, K. P. (2016). A rapid and sensitive profiling of free fatty acids using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Advances 6: 32130-32139.

43.   Mazzotti, F., Benabdelkamel, H., Di Donna, L., Maiuolo, L., Napoli, A. and Sindona G. (2012). Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry and isotope dilution method. Food Chemistry, 135: 1006-1010.

44.   Bartella, L., Mazzotti, F., Napoli, A., Sindona, G. and Di Donna, L. (2018). A comprehensive evaluation of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil by microwave-assisted hydrolysis and HPLC-MS/MS. Analytical and Bioanalytical Chemistry, 410: 2193-2201.

45.   Martini, S., Cavalchi, M., Conte, A. and Tagliazucchi, D. (2018). The paradoxical effect of extra-virgin olive oil on oxidative phenomena during in vitro co-digestion with meat. Food Research International, 109: 82-90.

46.   Angelis, A., Antoniadi, L., Stathopoulos, P., Halabalaki, M. and Skaltsounis, L. A. (2018). Oleocanthalic and oleaceinic acids: New compounds from extra virgin olive oil (EVOO). Phytochemistry Letters, 26: 190e194.

47.   Kanakis, P., Termentzi, A., Michel, T., Gikas, E., Halabalaki, M. And Skaltsounis, A. (2013). From olive drupes to olive oil. An HPLC-Orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Medica, 79: 1576-1587.

48.   Sánchez de Medina, V., Miho, H., Melliou, E., Magiatis, P., Priego-Capote, F. and Luque de Castro, M. D. (2017). Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography-tandem mass spectrometry. Talanta, 162: 24-31.

49.   Li, H., Yao, W., Liu, Q., Xu, J., Bao, B., Shan, M., Cao, Y., Cheng, F., Ding, A. and Zhang, L. (2017). Application of UHPLC-ESI-Q-TOF-MS to identify multiple constituents in processed products of the herbal medicine Ligustri Lucidi Fructus. Molecules 22: 1-14.

50.   Luque-Muńoz, A., Tapia, R., Haidour, A., Justicia, J. and Cuerva, J. M. (2019). Direct determination of phenolic secoiridoids in olive oil by ultra-high performance liquid chromatography-triple quadruple mass spectrometry analysis. Scientific Reports, 9: 15545.

51.   Sanz, M., Fernández de Simón, B., Cadahía, E., Esteruelas, E., Muńoz, A. M., Hernández, T., Estrellac, I. and Pinto, E. (2012). LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood. Effect of toasting intensity at cooperage. Journal of Mass Spectrometry, 47: 905-918.

52.   Ansari, E., Karami, A. and Ebrahimie, E. (2019). Isolation of 2-phenylethanol biosynthesis related gene and developmental patterns of emission of scent compounds in Persian musk rose (Rosa moschata Herrm.). Biocatalysis and Agricultural Biotechnology, 19: 1-6.

53.   Garcia-Bermudez, J., Baudrier, L., Bayraktar, E. C., Shen, Y., La, K., Guarecuco, R., Yucel, B., Fiore, D., Tavora, B., Freinkman, E., Chan, S. H., Lewis, C., Min, W., Inghirami, G., Sabatini, D. M. and Birsoy, K. (2019). Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Natur,e 567: 118-122.

54.   Prasad, K. (2019). Importance of flaxseed and its components in the management of hypertension. International Journal of Angiology, 28: 153-160.