Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 661 - 668

 

 

 

 

CHEMICAL COMPOSITION OF KASTURI TOBACCO RESINOID DETERMINED BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY

 

(Komposisi Sebatian Kimia Resinoid Tembakau Kasturi Menggunakan Kromatografi Gas-Spektrometri Jisim)

 

Larissa Tania1,5, Ari Satia Nugraha2,5, Tri Handoyo3,5, Banun Kusumawardani4,5*

 

1Graduate School of Biotechnology, Postgraduate Program,

2Drug Utilisation and Discovery Research Group, Faculty of Pharmacy,

3Department of Agronomy, Faculty of Agriculture,

4Department of Biomedical Sciences, Faculty of Dentistry,

5Center for Development of Advance Science and Technology,

University of Jember, Jember 68121, East Java, Indonesia

 

*Corresponding author:  banun_k.fkg@unej.ac.id

 

 

Received: 19 July 2021; Accepted: 8 August 2021; Published:  29 August 2021

 

 

Abstract

In Indonesia, Kasturi tobacco is widely cultivated in Jember and Bondowoso Districts. This local tobacco planted in dry season and sundried processed which the leaves were used as the raw material of premium cigarettes. The leaves constitute of diverse molecules with various biological or pharmacological activities that have been widely used in medical treatments in form of natural based medicament. This study aimed to determine the chemical composition in the Kasturi tobacco leaves using gas chromatography-mass spectrometry (GC-MS). Kasturi tobacco leaves were air-dried prior extraction using stirred assisted maceration method for 24 hours in methanol. Less polar components was extracted using n-hexane and vacuum dried before fractionation under a silica column chromatography. Fractions were analyzed using gas chromatography-mass spectrometry resulted in detection of esters, hydrocarbons, alcohol, nitrogenous compounds and terpenoids including, two unique tobacco resinoids α-CBT (4,8,13-cyclotetradecatriene-1,3-diol) and the labdanoid (11E, 13Z)-labdadien-8-ol and (12Z)-abienol.

 

Keywords:  diterpenoid, fractionation, gas chromatography-mass spectrometry, Kasturi tobacco leaves, resinoid

 

Abstrak

Di Indonesia, tembakau Kasturi ditanam secara meluas di daerah Jember dan Bondowoso. Tembakau tempatan ini di tanam pada musim kering dan proses pengeringan di mana daun digunakan sebagai bahan mentah dalam pembuatan rokok premium. Bahagian daun yang kaya dengan aktiviti biologi dan farmakologi telah digunakan secara meluas bagi rawatan perubatan dalam bentuk ubatan semulajadi. Kajian ini bertujuan mengkaji komposisi kimia di dalam daun tembakau Kasturi menggunakan kromatografi gas-spektrometri jisim (GC-MS). Daun tembakau Kasturi terlebih dahulu dikeringkan sebelum pengekstrakan kaedah maserasi berbantukan pengacauan selama 24 jam di dalam larutan metanol. Sebatian tak berkutub diekstrak mengunakan n-heksana dan pengeringan vakum sebelum pemisahan dilakukan melalui kromatografi turus silika. Hasil analisis kromatografi gas-spektrometri jisim mengesan kehadiran ester, hidrokarbon, alkohol, sebatian nbernitrogen dan terpenoids termasuklah resinoids unik iaitu α-CBT (4,8,13-siklotetradekatrien-1,3-diol) and the labdanoid (11E, 13Z)-labdadien-8-ol and (12Z)-abienol.

 

Keywords:  diterpenoid, pemisahan, kromatografi gas-pektrometri jisim, daun tembakau Kasturi, resinoid

 

References

1.      Popova, V., Tumbarski, Y., Ivanova, T., Hadjikinova, R. and Stoyanova, A. (2019). Tobacco resinoid (Nicotiana tabacum L.) as an active ingredient of cosmetic gels. Journal of Applied Pharmaceutical Science. 9(09): 111-118.

2.      Antonova, D., Ivanova, D., Antonov, L. and Abe, I. (2016). Insight into the aroma profile of bulgarian tobacco absolute oil. Industrial Crops and Products, 94: 226-232.

3.      Baser, K. H. C., and Buchbauer, G. (2010). Handbook of essential oils: Science, technology, and applications. CRC Press, Boca Raton: pp. 42-85.

4.      Bauer, K., Garbe, D. and Surburg, H. (2001). Common fragrance and flavor materials. Preparation, properties and uses, 4th edition. Wiley-VCH, Weinheim, New York: pp. 177-238.

5.      Banožić, M., Banjari, I., Jakovljević, M., Šubarić, D., Tomas, S., Babić, J. and Jokić, S. (2019). Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules, 24(8): 1-14.

6.      Rodgman, A. and Perfetti, T. (2013). The chemical components of tobacco and tobacco smoke, 2nd edition. CRC Press, Boca Raton: pp. 28.

7.      Kishore, K. (2014). Monograph of tobacco (Nicotiana tabaccum). Indian Journal of Drugs, 2(1): 5-23.

8.      El Sayed, K. A. and Sylvester, P. W. (2007). Biocatalytic and semisynthetic studies of the anticancer tobacco cembranoids. Expert Opinion on Investigational Drugs, 16: 877-887.

9.      Balai Penelitian Tanaman Pemanis dan Serat. http://balittas.litbang.pertanian.go.id/index.php/id/tentang-kami/komoditas/pemanis/60-info-teknologi/104-kasturi [Access online 15 May 2020].

10.   Saunders, J. A. and Blume, D. E. (1981). Quantitation of Major Tobacco Alkaloids by High Performance Liquid Chromatography.  Journal of Chromatography A, 205: 147-154.

11.   Severson, R. F., Ellington, J. J. and Schlotzhauer, P. F. (1977). Gas chromatographic method for the determination of free and total solanesol in tobacco. Journal of Chromatography A, 139: 269-282.

12.   Qian, X. B., Ye, J. P., Chen, X. M., Zhang, C. H., Liang, Y.J., Li, Z. H. and Yang, J. (2014). Analysis of cembranoids in flue-cured tobacco by accelerated solvent extraction and gas chromatography-mass spectrometry-selected ion monitoring. Journal of the Chinese Chemical Society, 61: 1133-1140.

13.   Pizzuti, I. R., de Kok, A., Cardoso, C. D., Reichert, B., de Kroon, M., Wind, W., Righi, L. W. and da Silva, R. C. (2012). A multi-residue method for pesticides analysis in green coffee beans using gas chromatography–negative chemical ionization mass spectrometry in selective ion monitoring mode. Journal of Chromatography A, 1251: 16-26.

14.   Zhou, Y., Yang, Y., Li, X. L., Chen, Z. Y., Liu, Q. B., Zhu, X. L. and Yang, J. (2016). Determination of cembrenediols in tobacco by gas chromatography–mass spectrometry-selected ion monitoring with precolumn derivatization. Acta Chromatographica, 28(4): 513-524.

15.   Popova, V., Ivanova, T., Stoyanova, A., Georgiev, V., Hristeva, T., Nikolova, V., Docheva, M.., Nikolov, N. and Damianova, S. (2018). Phytochemicals in leaves and extracts of the variety “plovdiv 7” of bulgarian oriental tobacco (Nicotiana tabacum L.). Trends in Phytochemical Research, 2: 27-36.

16.   Johnson, A.W., Severson, R. F. and Hudson, J. (1985). Tobacco leaf trichomes and their exudates. Tobacco Science, 29: 67-72.

17.   Colledge, A., Reid, W. W. and Russel, R. (1975). The diterpenoids of nicotiana species and their potential technological significance. Chemistry & Industry, 5(13): 570-571.

18.   Reid, W.W. (1974). The phytochemistry of the genus nicotiana. Ann. Tabac, SEITA 2: 145-178.

19.   Enzell, C. R. and Wahlberg, I. (1990). Tobacco isoprenoids - precursors of important aroma constituents. Pure and Applied Chemistry, 62(7): 1353-1356.

20.   Leffingwell, J.C. (1999). Tobacco: Production, chemistry, and technology. Blackwell Science, London: pp. 265-284.

21.   Huang, M., Zhang, H., Wang, Z., Niu, D., Li, Y. and Cui, H. (2018). Comparative studies of leaf surface chemical biosynthesis in different tobacco cultivars. Acta Physiologiae Plantarum, 40: 67.