Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 661 - 668
CHEMICAL
COMPOSITION OF KASTURI TOBACCO RESINOID DETERMINED BY GAS CHROMATOGRAPHY-MASS
SPECTROMETRY
(Komposisi
Sebatian Kimia Resinoid Tembakau Kasturi Menggunakan Kromatografi
Gas-Spektrometri Jisim)
Larissa Tania1,5, Ari Satia Nugraha2,5,
Tri Handoyo3,5, Banun Kusumawardani4,5*
1Graduate School of
Biotechnology, Postgraduate Program,
2Drug Utilisation and
Discovery Research Group, Faculty of Pharmacy,
3Department of Agronomy, Faculty of Agriculture,
4Department of Biomedical
Sciences, Faculty of Dentistry,
5Center for Development of
Advance Science and Technology,
University of Jember, Jember 68121, East Java, Indonesia
*Corresponding
author: banun_k.fkg@unej.ac.id
Received: 19 July 2021;
Accepted: 8 August 2021; Published: 29
August 2021
Abstract
In Indonesia, Kasturi tobacco is widely
cultivated in Jember and Bondowoso Districts. This
local tobacco planted in dry season and sundried processed which the leaves
were used as the raw material of premium cigarettes. The leaves
constitute of diverse molecules with various biological or pharmacological
activities that have been widely used in medical treatments in form of natural
based medicament. This study aimed to determine
the chemical composition in the Kasturi tobacco leaves using gas chromatography-mass
spectrometry (GC-MS). Kasturi tobacco leaves were air-dried prior extraction
using stirred assisted maceration method for 24 hours in methanol. Less polar
components was extracted using n-hexane
and vacuum dried before fractionation under a silica column chromatography.
Fractions were analyzed using gas chromatography-mass spectrometry resulted in detection
of esters, hydrocarbons, alcohol, nitrogenous compounds and terpenoids
including, two unique tobacco resinoids α-CBT
(4,8,13-cyclotetradecatriene-1,3-diol) and the labdanoid (11E, 13Z)-labdadien-8-ol
and (12Z)-abienol.
Keywords: diterpenoid,
fractionation, gas chromatography-mass spectrometry, Kasturi tobacco leaves, resinoid
Abstrak
Di
Indonesia, tembakau Kasturi ditanam secara meluas di daerah Jember dan
Bondowoso. Tembakau tempatan ini di tanam pada
musim kering dan proses pengeringan di mana daun digunakan sebagai bahan mentah
dalam pembuatan rokok premium. Bahagian daun yang kaya dengan aktiviti
biologi dan farmakologi telah digunakan secara meluas bagi rawatan perubatan
dalam bentuk ubatan semulajadi. Kajian ini bertujuan mengkaji komposisi kimia
di dalam daun tembakau Kasturi menggunakan kromatografi gas-spektrometri jisim
(GC-MS). Daun tembakau Kasturi terlebih dahulu dikeringkan sebelum
pengekstrakan kaedah maserasi berbantukan pengacauan selama 24 jam di dalam
larutan metanol. Sebatian tak berkutub diekstrak mengunakan n-heksana dan
pengeringan vakum sebelum pemisahan dilakukan melalui kromatografi turus
silika. Hasil
analisis kromatografi gas-spektrometri jisim mengesan kehadiran
ester, hidrokarbon, alkohol, sebatian nbernitrogen dan terpenoids termasuklah
resinoids unik iaitu α-CBT (4,8,13-siklotetradekatrien-1,3-diol) and
the labdanoid (11E, 13Z)-labdadien-8-ol and (12Z)-abienol.
Keywords: diterpenoid, pemisahan, kromatografi
gas-pektrometri jisim, daun tembakau Kasturi, resinoid
References
1.
Popova, V., Tumbarski, Y., Ivanova, T., Hadjikinova, R. and
Stoyanova, A. (2019). Tobacco resinoid (Nicotiana
tabacum L.) as an active ingredient of cosmetic gels. Journal
of Applied Pharmaceutical Science. 9(09): 111-118.
2.
Antonova, D., Ivanova, D., Antonov, L. and Abe, I. (2016). Insight into the aroma
profile of bulgarian tobacco absolute oil. Industrial
Crops and Products, 94: 226-232.
3.
Baser, K. H. C., and Buchbauer, G. (2010). Handbook of essential oils:
Science, technology, and applications. CRC Press, Boca Raton: pp. 42-85.
4.
Bauer, K., Garbe, D. and Surburg, H. (2001). Common fragrance and flavor
materials. Preparation, properties and uses, 4th edition. Wiley-VCH, Weinheim,
New York: pp. 177-238.
5.
Banožić, M., Banjari, I., Jakovljević, M.,
Šubarić, D., Tomas, S., Babić, J. and Jokić, S. (2019). Optimization of
ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules, 24(8): 1-14.
6.
Rodgman, A. and Perfetti, T. (2013). The chemical components of
tobacco and tobacco smoke, 2nd edition. CRC Press, Boca Raton: pp. 28.
7.
Kishore, K. (2014). Monograph of tobacco (Nicotiana tabaccum). Indian Journal
of Drugs, 2(1): 5-23.
8.
El Sayed, K. A. and Sylvester, P. W. (2007). Biocatalytic and
semisynthetic studies of the anticancer tobacco cembranoids. Expert Opinion
on Investigational Drugs, 16: 877-887.
9.
Balai Penelitian Tanaman Pemanis dan Serat.
http://balittas.litbang.pertanian.go.id/index.php/id/tentang-kami/komoditas/pemanis/60-info-teknologi/104-kasturi
[Access online
15 May 2020].
10.
Saunders, J. A. and Blume, D. E. (1981). Quantitation of Major Tobacco Alkaloids by High Performance
Liquid Chromatography. Journal of Chromatography A, 205: 147-154.
11.
Severson, R. F., Ellington, J. J. and Schlotzhauer, P. F. (1977). Gas chromatographic method
for the determination of free and total solanesol in tobacco. Journal
of Chromatography A, 139: 269-282.
12.
Qian, X. B., Ye, J. P., Chen, X. M., Zhang, C. H., Liang, Y.J., Li, Z. H. and Yang, J. (2014). Analysis of
cembranoids in flue-cured tobacco by accelerated solvent extraction and gas
chromatography-mass spectrometry-selected ion monitoring. Journal
of the Chinese Chemical
Society, 61: 1133-1140.
13.
Pizzuti, I. R., de Kok, A., Cardoso, C. D., Reichert, B., de Kroon,
M., Wind, W., Righi, L. W. and da Silva, R. C. (2012). A multi-residue method for
pesticides analysis in green coffee beans using gas chromatography–negative
chemical ionization mass spectrometry in selective ion monitoring mode. Journal
of Chromatography A, 1251: 16-26.
14.
Zhou, Y., Yang, Y., Li, X. L., Chen, Z. Y., Liu, Q. B., Zhu,
X. L. and Yang, J. (2016). Determination
of cembrenediols in tobacco by gas chromatography–mass spectrometry-selected
ion monitoring with precolumn derivatization. Acta Chromatographica, 28(4): 513-524.
15. Popova, V., Ivanova, T., Stoyanova, A., Georgiev, V.,
Hristeva, T., Nikolova, V., Docheva, M.., Nikolov, N. and Damianova, S. (2018). Phytochemicals in leaves and extracts of the variety “plovdiv 7” of
bulgarian oriental tobacco (Nicotiana tabacum L.). Trends in Phytochemical Research, 2: 27-36.
16. Johnson, A.W., Severson, R. F. and Hudson, J. (1985). Tobacco leaf trichomes and their exudates. Tobacco Science, 29: 67-72.
17.
Colledge, A., Reid, W. W. and Russel, R. (1975). The diterpenoids of nicotiana species and their potential
technological significance. Chemistry & Industry, 5(13): 570-571.
18.
Reid, W.W. (1974). The phytochemistry of the genus nicotiana. Ann. Tabac, SEITA 2: 145-178.
19.
Enzell, C. R. and Wahlberg, I. (1990). Tobacco isoprenoids -
precursors of important aroma constituents. Pure and Applied Chemistry, 62(7): 1353-1356.
20.
Leffingwell, J.C. (1999). Tobacco: Production,
chemistry, and technology. Blackwell Science, London: pp. 265-284.
21.
Huang, M., Zhang, H., Wang, Z., Niu, D., Li, Y. and Cui, H. (2018). Comparative studies of leaf
surface chemical biosynthesis in different tobacco cultivars. Acta Physiologiae Plantarum,
40: 67.