Malaysian
Journal of Analytical Sciences Vol 25 No 4
(2021): 649 - 660
(Pengoptimuman
Suhu dan Masa Pengekstrakan pada Sebatian Fenolik dan Aktivikiti Antioksidan
daripada Ekstrak Akues Propolis Kelulut (Trigona Spp.) Malaysia menggunakan Kaedah Gerak Balas Permukaan)
Abdullah Hagar1, Nurlisa
Fatihah Abd Rani1, Muhammad Ibrahim1*, Norazsida Ramli2,
Idris Adewale Ahmed3, Abbe Maleyki Mhd Jalil4, Mohd Nur
Nashriq Anuar1
1Department of Nutrition Sciences,
2Department of Biomedical Science,
Kulliyyah
of Allied Health Sciences,
International
Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang,
Malaysia
3Centre for Natural Products Research and Drug Discovery (CENAR), Level 3,
Research Management & Innovation Complex,
University
of Malaya, 50603 Kuala Lumpur, Malaysia
4School of Nutrition and Dietetics,
Universiti
Sultan Zainal Abidin, 21030 Kuala Terengganu, Terengganu, Malaysia
*Corresponding
author. abumaisarah@iium.edu.my
Received: 8 July 2021;
Accepted: 8 August 2021; Published: 29
August 2021
Abstract
Propolis is a natural product with rich bioactive
constituents for medicinal, pharmaceutical, food, and cosmetic uses. It is
considered a diet supplement to enhance health and prevent disease. The optimum
extraction conditions used to obtain the highest yield of total phenolic
content (TPC), total flavonoid content (TFC), and antioxidant capacities for
Trigona propolis aqueous extract was analyzed using response surface methodology and the
central composite design. The effects
of extraction temperature (X1: 30 - 60 °C) and extraction time (X2:
24 - 72 hours) on TPC (Y1), TFC (Y2), and antioxidant
activities (DPPH (Y3), ABTS•+ radical scavenging
assay (Y4), and ferric reducing antioxidant power (Y5) were
investigated. The experimental data were satisfactorily fitted into a
second-order polynomial model with regard to TPC (R2 = 0.9461, p
= 0.0003), TFC (R2 = 0.9110, p = 0.0015), DPPH (R2 =
0.9482, p <0.0001), ABTS (R2
= 0.9663, p <0.0001), and FRAP
(R2 = 0.9058, p = 0.0018). The optimum extraction
temperature and time were 43.75 °C
and 52.85 hours. The predicted response values for TPC, TFC, DPPH, ABTS, and FRAP were 104.30 mg GAE/100g, 6.95 mg QE/g, 3.24 mMTE/g, 2.59 mMTE/g, and 4.34 mMTE/g,
respectively. The experimental values were close to the predicted values 100.41
± 2.74 mg GAE/100g, 6.74 ± 0.08 mg QE/g, 3.17 ± 0.08 mMTE/g, 2.76 ± 0.14
mMTE/g, and 4.60 ± 0.14 mMTE/g. As a result, the models generated are suitable,
and RSM was successful in optimizing the extraction conditions. Consequently,
in this study, it was observed that the optimum extraction temperature and time
provided the highest antioxidant yield of aqueous propolis extract which can be
used as functional food ingredients.
Keywords: phenolic, antioxidant, propolis
Abstrak
Propolis merupakan hasil semulajadi yang kaya
bahan bioaktif bagi perubatan, farmaseutikal, makanan dan kosmetik. Ia dianggap
diet tambahan bagi kesihatan dan mencegah penyakit. Keadaan pengekstrakan optimum yang telah
digunakan untuk hasil jumlah kandungan fenolik (TPC), jumlah kandungan
flavonoid (TFC), dan kapasiti antioksidan tertinggi dianalis menggunakan
pengekstrakan akues propolis kelulut melalui kaedah gerak balas permukaan, reka
bentuk komposit berpusat. Kesan suhu pengekstrakan (X1: 30 - 60 °C)
dan masa pengekstrakan (X2: 24 - 72 jam) pada aktiviti TPC (Y1),
TFC (Y2) dan aktiviti antioksidan DPPH (Y3), ABTS•+ (Y4),
dan FRAP (Y5) telah diselidik. Data eksperimen diperolehi adalah
sepadan bagi model polinomial peringkat kedua terhadap TPC (R2 =
0.9461, p = 0.003), TFC (R2 = 0.9110, p = 0.0015),
DPPH (R2 = 0.9482, p <0.0001), ABTS (R2 =
0.9663, p <0.0001), dan FRAP (R2 = 0.9058, p=0.0018).
Suhu dan masa pengekstrakan yang optimum ialah 43.75 °C dan 52.85 jam. Nilai
tindak balas yang diramalkan untuk TPC, TFC, DPPH, ABTS, dan FRAP adalah 104.30
mg GAE/100g, 6.95 mg QE/g, 3.24 mMTE/g, 2.59 mMTE/g, dan 4.34 mMTE/g. Nilai
eksperimen hampir dengan nilai yang diramalkan iaitu 100.41 ± 2.74 mg GAE/100g,
6.74 ± 0,08 mg QE/g, 3.17 ± 0.08 mMTE/g, 2.76 ± 0,14 mMTE/g, dan 60 ± 0,14
mMTE/g. Dalam kajian ini, diperhatikan bahawa suhu dan masa pengekstrakan yang
optimum memberikan hasil antioksidan tertinggi ekstrak propolis dan dapat
digunakan sebagai bahan makanan
Kata kunci: fenolik,
antioksida, propolis
References
1.
Oryan,
A., Alemzadeh, E. and Moshiri, A. (2018). Potential role of propolis in wound
healing: Biological properties and therapeutic activities. Biomedicine and
Pharmacotherapy, 98(2017): 469-483.
2.
Freires,
I. A., Queiroz, V. C. P. P., Furletti, V. F., Ikegaki, M., de Alencar, S. M.,
Duarte, M. C. T. and Rosalen, P. L.
(2016). Chemical composition and antifungal potential of Brazilian propolis
against Candida spp. Journal de Mycologie Medicale, 26(2): 122-132.
3.
Freires,
Irlan Almeida, De Alencar, S. M. and Rosalen, P. L. (2016). A pharmacological
perspective on the use of Brazilian Red Propolis and its isolated compounds
against human diseases. European Journal of Medicinal Chemistry, 110:
267-279.
4.
Pobiega,
K., Kraśniewska, K. and Gniewosz, M. (2019). Application of propolis in
antimicrobial and antioxidative protection of food quality – A review. Trends
in Food Science and Technology, 83(2018): 53-62.
5.
Farooqui,
T. (2012). Beneficial effects of propolis on human health and neurological
diseases. Frontiers in Bioscience, E4(1): 779.
6.
Salas,
A., Mercado, M. I., Zampini, I. C., Ponessa, G. I. and Isla, M. I. (2016).
Determination of botanical origin of propolis from Monte Region of Argentina by
histological and chemical methods. Natural Product Communications,
11(5): 627-630.
7.
Kubiliene,
L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K.,
Kubilius, R., Kasparaviciene, G. and Savickas, A. (2015). Alternative
preparation of propolis extracts: Comparison of their composition and
biological activities. BMC Complementary and Alternative Medicine,
15(1): 1-7.
8.
Yang,
W., Wu, Z., Huang, Z. Y. and Miao, X. (2017). Preservation of orange juice
using propolis. Journal of Food Science and Technology, 54(11):
3375-3383.
9.
Luis-Villaroya,
A., Espina, L., García-Gonzalo, D., Bayarri, S., Pérez, C. and Pagán, R.
(2015). Bioactive properties of a propolis-based dietary supplement and its use
in combination with mild heat for apple juice preservation. International
Journal of Food Microbiology, 205: 90-97.
10.
Viera,
V. B., Piovesan, N., Moro, K. I. B., Rodrigues, A. S., Scapin, G., Rosa, C. S.
da. and Kubota, E. H. (2016). Preparation and microbiological analysis of
Tuscan sausage. Food Science and Technology, 36: 37-41.
11.
Mello,
B. C. B. S., Petrus, J. C. C. and Hubinger, M. D. (2010). Concentration of
flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts
through nanofiltration. Journal of Food Engineering, 96(4):
533-539.
12.
Bachir
Bey, M., Meziant, L., Benchikh, Y. and Louaileche, H. (2014). Deployment of
response surface methodology to optimize recovery of dark fresh fig (Ficus
carica L., var. Azenjar) total phenolic compounds and antioxidant activity.
Food Chemistry, 162: 277-282.
13.
Durling,
N. E., Catchpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Foo, L. Y.
and Perry, N. B. (2007). Extraction of phenolics and essential oil from dried
sage (Salvia officinalis) using ethanol-water mixtures. Food
Chemistry, 101(4): 1417-1424.
14.
Erdogan,
S., Ates, B., Durmaz, G., Yilmaz, I. and Seckin, T. (2011a). Pressurized liquid
extraction of phenolic compounds from Anatolia propolis and their radical
scavenging capacities. Food and Chemical Toxicology, 49(7): 1592-1597.
15.
Yusof,
N., Munaim, M. S. A. and Veloo Kutty, R. (2021). Optimization of total phenolic
compounds extracted from propolis by ultrasound- assisted extraction. Chemical
Engineering Communications, 208(4), 564-572.
16.
Oldoni,
T. L. C., Oliveira, S. C., Andolfatto, S., Karling, M., Calegari, M. A., Sado,
R. Y., Maia, F. M. C., Alencar, S. M. and Lima, V. A. (2015). Chemical
characterization and optimization of the extraction process of bioactive
compounds from propolis produced by selected bees Apis mellifera. Journal of
the Brazilian Chemical Society, 26(10): 2054-2062.
17.
González-Montelongo,
R., Lobo, M. G. and González, M. (2010). The effect of extraction
temperature, time and number of steps on
the antioxidant capacity of methanolic banana peel extracts. Separation and
Purification Technology, 71(3): 347-355.
18.
Olczyk,
P., Komosinska-Vassev, K., Ramos, P., Mencner, L., Olczyk, K. and Pilawa, B.
(2017). Free radical scavenging activity of drops and spray containing propolis
- An EPR examination. Molecules, 22(1): 128.
19.
Yim, H.
S., Chye, F. Y., Rao, V., Low, J. Y., Matanjun, P., How, S. E. and Ho, C. W.
(2013). Optimization of extraction time and temperature on antioxidant activity
of Schizophyllum commune aqueous extract using response surface methodology. Journal
of Food Science and Technology, 50(2): 275-283.
20.
Trusheva,
B., Trunkova, D. and Bankova, V. (2007). Different extraction methods of
biologically active components from
propolis; A preliminary study. Chemistry Central Journal, 1(1): 1–4.
21.
Margeretha,
I., Suniarti, D. F., Herda, E. and Alim, Z. (2012). Optimization and
comparative study of different extraction methods of biologically active
components of Indonesian propolis Trigona spp. Journal of Natural Products,
5: 233-242.
22.
Tiveron,
A. P., Rosalen, P. L., Franchin, M., Lacerda, R. C. C., Bueno-Silva, B., Benso,
B., Denny, C., Ikegaki, M. and De Alencar, S. M. (2016). Chemical
characterization and antioxidant, antimicrobial, and anti-inflammatory
activities of South Brazilian organic propolis. PLoS ONE, 11(11): 1-18.
23.
Ahmed, I. A., Mikail, M. A., Bin Ibrahim, M., Bin
Hazali, N., Rasad, M. S. B. A., Ghani, R. A., Wahab, R. A., Arief, S. J. and
Yahya, M. N. A. (2015). Antioxidant activity and phenolic profile of various
morphological parts of underutilised Baccaurea angulata fruit. Food
Chemistry, 172: 778-787.
24.
Meda,
A., Lamien, C. E., Romito, M., Millogo, J. and Nacoulma, O. G. (2005).
Determination of the total phenolic, flavonoid and proline contents in Burkina
Fasan honey, as well as their radical scavenging activity. Food Chemistry,
91(3): 571-577.
25.
Hatano,
A., Nonaka, T., Yoshino, M., Ahn, M. R., Tazawa, S., Araki, Y. and Kumazawa, S.
(2012). Antioxidant activity and phenolic constituents of red propolis from
Shandong, China. Food Science and Technology Research, 18(4): 577-584.
26.
Alvarez-Suarez,
J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F.,
Damiani, E.,Astolfi, P., Bompadre, S. and Battino, M. (2010). Antioxidant and
antimicrobial capacity of several monofloral Cuban honeys and their correlation
with color, polyphenol content and other chemical compounds. Food and
Chemical Toxicology, 48(8–9): 2490-2499.
27.
Spigno,
G., Tramelli, L. and De Faveri, D. M. (2007). Effects of extraction time,
temperature and solvent on concentration and antioxidant activity of grape marc
phenolics. Journal of Food Engineering, 81(1), 200-208.
28.
Baharuddin,
N. A. F., Nordin, M. F. M., Morad, N. A., Aris, N. I. A. and Yunus, M. A. C.
(2018). Total phenolic, flavonoid content and antioxidant activity of Clinacanthus
nutans leaves by water-based ultrasonic assisted extraction. Malaysian
Journal of Analytical Sciences, 22(4): 659-666.
29.
Dent,
M., Dragović-Uzelac, V., Penić, M., Brñić, M., Bosiljkov, T. and
Levaj, B. (2013). The effect of extraction solvents, temperature and time on
the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia
officinalis L.) extracts. Food Technology and Biotechnology, 51(1):
84-91.
30.
Dranca,
F. and Oroian, M. (2017). Total
monomeric anthocyanin, total phenolic content and antioxidant activity of
extracts from eggplant (Solanum Melongena L.) peel using ultrasonic
treatments. Journal of Food Process Engineering, 40(1): 12312.
31.
Miron,
T. L., Plaza, M., Bahrim, G., Ibáñez, E. and Herrero, M. (2011). Chemical
composition of bioactive pressurized extracts of Romanian aromatic plants. Journal
of Chromatography A, 1218(30): 4918-4927.
32. Gan, C. Y. and Latiff, A. A. (2011). Optimisation of
the solvent extraction of bioactive compounds from Parkia speciosa pod
using response surface methodology. Food Chemistry, 124(3): 1277-1283.