Malaysian Journal of Analytical Sciences Vol 25 No 4 (2021): 649 - 660

 

 

 

 

OPTIMIZATION OF EXTRACTION TEMPERATURE AND TIME ON PHENOLIC COMPOUNDS AND ANTIOXIDANT ACTIVITY OF MALAYSIAN PROPOLIS Trigona Spp. AQUEOUS EXTRACT USING RESPONSE SURFACE METHODOLOGY

 

(Pengoptimuman Suhu dan Masa Pengekstrakan pada Sebatian Fenolik dan Aktivikiti Antioksidan daripada Ekstrak Akues Propolis Kelulut (Trigona Spp.) Malaysia   menggunakan Kaedah Gerak Balas Permukaan)

 

Abdullah Hagar1, Nurlisa Fatihah Abd Rani1, Muhammad Ibrahim1*, Norazsida Ramli2, Idris Adewale Ahmed3, Abbe Maleyki Mhd Jalil4, Mohd Nur Nashriq Anuar1

 

1Department of Nutrition Sciences,

2Department of Biomedical Science,

Kulliyyah of Allied Health Sciences,

International Islamic University Malaysia, Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Centre for Natural Products Research and Drug Discovery (CENAR), Level 3, Research Management & Innovation Complex,

University of Malaya, 50603 Kuala Lumpur, Malaysia

4School of Nutrition and Dietetics,

Universiti Sultan Zainal Abidin, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author.  abumaisarah@iium.edu.my

 

 

Received: 8 July 2021; Accepted: 8 August 2021; Published:  29 August 2021

 

 

Abstract

Propolis is a natural product with rich bioactive constituents for medicinal, pharmaceutical, food, and cosmetic uses. It is considered a diet supplement to enhance health and prevent disease. The optimum extraction conditions used to obtain the highest yield of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacities for Trigona propolis aqueous extract was analyzed   using   response  surface  methodology  and  the  central  composite  design.   The   effects of extraction temperature (X1: 30 - 60 °C) and extraction time (X2: 24 - 72 hours) on TPC (Y1), TFC (Y2), and antioxidant activities (DPPH (Y3), ABTS•+ radical scavenging assay (Y4), and ferric reducing antioxidant power (Y5) were investigated. The experimental data were satisfactorily fitted into a second-order polynomial model with regard to TPC (R2 = 0.9461, p = 0.0003), TFC (R2 = 0.9110, p = 0.0015), DPPH (R2 = 0.9482, p <0.0001), ABTS (R2 = 0.9663, p <0.0001), and FRAP (R2 = 0.9058, p = 0.0018). The optimum extraction temperature and time were 43.75 °C and 52.85 hours. The predicted response values for TPC, TFC, DPPH, ABTS, and FRAP were 104.30 mg GAE/100g, 6.95 mg QE/g, 3.24 mMTE/g, 2.59 mMTE/g, and 4.34 mMTE/g, respectively. The experimental values were close to the predicted values 100.41 ± 2.74 mg GAE/100g, 6.74 ± 0.08 mg QE/g, 3.17 ± 0.08 mMTE/g, 2.76 ± 0.14 mMTE/g, and 4.60 ± 0.14 mMTE/g. As a result, the models generated are suitable, and RSM was successful in optimizing the extraction conditions. Consequently, in this study, it was observed that the optimum extraction temperature and time provided the highest antioxidant yield of aqueous propolis extract which can be used as functional food ingredients.

 

Keywords:  phenolic, antioxidant, propolis

 

Abstrak

Propolis merupakan hasil semulajadi yang kaya bahan bioaktif bagi perubatan, farmaseutikal, makanan dan kosmetik. Ia dianggap diet tambahan bagi kesihatan dan mencegah penyakit. Keadaan pengekstrakan optimum yang telah digunakan untuk hasil jumlah kandungan fenolik (TPC), jumlah kandungan flavonoid (TFC), dan kapasiti antioksidan tertinggi dianalis menggunakan pengekstrakan akues propolis kelulut melalui kaedah gerak balas permukaan, reka bentuk komposit berpusat. Kesan suhu pengekstrakan (X1: 30 - 60 °C) dan masa pengekstrakan (X2: 24 - 72 jam) pada aktiviti TPC (Y1), TFC (Y2) dan aktiviti antioksidan DPPH (Y3), ABTS•+ (Y4), dan FRAP (Y5) telah diselidik. Data eksperimen diperolehi adalah sepadan bagi model polinomial peringkat kedua terhadap TPC (R2 = 0.9461, p = 0.003), TFC (R2 = 0.9110, p = 0.0015), DPPH (R2 = 0.9482, p <0.0001), ABTS (R2 = 0.9663, p <0.0001), dan FRAP (R2 = 0.9058, p=0.0018). Suhu dan masa pengekstrakan yang optimum ialah 43.75 °C dan 52.85 jam. Nilai tindak balas yang diramalkan untuk TPC, TFC, DPPH, ABTS, dan FRAP adalah 104.30 mg GAE/100g, 6.95 mg QE/g, 3.24 mMTE/g, 2.59 mMTE/g, dan 4.34 mMTE/g. Nilai eksperimen hampir dengan nilai yang diramalkan iaitu 100.41 ± 2.74 mg GAE/100g, 6.74 ± 0,08 mg QE/g, 3.17 ± 0.08 mMTE/g, 2.76 ± 0,14 mMTE/g, dan 60 ± 0,14 mMTE/g. Dalam kajian ini, diperhatikan bahawa suhu dan masa pengekstrakan yang optimum memberikan hasil antioksidan tertinggi ekstrak propolis dan dapat digunakan sebagai bahan makanan

 

Kata kunci:  fenolik, antioksida, propolis

 

References

1.      Oryan, A., Alemzadeh, E. and Moshiri, A. (2018). Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomedicine and Pharmacotherapy, 98(2017): 469-483.

2.      Freires, I. A., Queiroz, V. C. P. P., Furletti, V. F., Ikegaki, M., de Alencar, S. M., Duarte, M. C. T. and  Rosalen, P. L. (2016). Chemical composition and antifungal potential of Brazilian propolis against Candida spp. Journal de Mycologie Medicale, 26(2): 122-132.

3.      Freires, Irlan Almeida, De Alencar, S. M. and Rosalen, P. L. (2016). A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases. European Journal of Medicinal Chemistry, 110: 267-279.

4.      Pobiega, K., Kraśniewska, K. and Gniewosz, M. (2019). Application of propolis in antimicrobial and antioxidative protection of food quality – A review. Trends in Food Science and Technology, 83(2018): 53-62.

5.      Farooqui, T. (2012). Beneficial effects of propolis on human health and neurological diseases. Frontiers in Bioscience, E4(1): 779.

6.      Salas, A., Mercado, M. I., Zampini, I. C., Ponessa, G. I. and Isla, M. I. (2016). Determination of botanical origin of propolis from Monte Region of Argentina by histological and chemical methods. Natural Product Communications, 11(5): 627-630.

7.      Kubiliene, L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K., Kubilius, R., Kasparaviciene, G. and Savickas, A. (2015). Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complementary and Alternative Medicine, 15(1): 1-7.

8.      Yang, W., Wu, Z., Huang, Z. Y. and Miao, X. (2017). Preservation of orange juice using propolis. Journal of Food Science and Technology, 54(11): 3375-3383.

9.      Luis-Villaroya, A., Espina, L., García-Gonzalo, D., Bayarri, S., Pérez, C. and Pagán, R. (2015). Bioactive properties of a propolis-based dietary supplement and its use in combination with mild heat for apple juice preservation. International Journal of Food Microbiology, 205: 90-97.

10.   Viera, V. B., Piovesan, N., Moro, K. I. B., Rodrigues, A. S., Scapin, G., Rosa, C. S. da. and Kubota, E. H. (2016). Preparation and microbiological analysis of Tuscan sausage. Food Science and Technology, 36: 37-41.

11.   Mello, B. C. B. S., Petrus, J. C. C. and Hubinger, M. D. (2010). Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. Journal of Food Engineering, 96(4): 533-539.

12.   Bachir Bey, M., Meziant, L., Benchikh, Y. and Louaileche, H. (2014). Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chemistry, 162: 277-282.

13.   Durling, N. E., Catchpole, O. J., Grey, J. B., Webby, R. F., Mitchell, K. A., Foo, L. Y. and Perry, N. B. (2007). Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol-water mixtures. Food Chemistry, 101(4): 1417-1424.

14.   Erdogan, S., Ates, B., Durmaz, G., Yilmaz, I. and Seckin, T. (2011a). Pressurized liquid extraction of phenolic compounds from Anatolia propolis and their radical scavenging capacities. Food and Chemical Toxicology, 49(7): 1592-1597.

15.   Yusof, N., Munaim, M. S. A. and Veloo Kutty, R. (2021). Optimization of total phenolic compounds extracted from propolis by ultrasound- assisted extraction. Chemical Engineering Communications, 208(4), 564-572.

16.   Oldoni, T. L. C., Oliveira, S. C., Andolfatto, S., Karling, M., Calegari, M. A., Sado, R. Y., Maia, F. M. C., Alencar, S. M. and Lima, V. A. (2015). Chemical characterization and optimization of the extraction process of bioactive compounds from propolis produced by selected bees Apis mellifera. Journal of the Brazilian Chemical Society, 26(10): 2054-2062.

17.   González-Montelongo, R., Lobo, M. G. and González, M. (2010). The effect of extraction temperature,  time and number of steps on the antioxidant capacity of methanolic banana peel extracts. Separation and Purification Technology, 71(3): 347-355.

18.   Olczyk, P., Komosinska-Vassev, K., Ramos, P., Mencner, L., Olczyk, K. and Pilawa, B. (2017). Free radical scavenging activity of drops and spray containing propolis - An EPR examination. Molecules, 22(1): 128.

19.   Yim, H. S., Chye, F. Y., Rao, V., Low, J. Y., Matanjun, P., How, S. E. and Ho, C. W. (2013). Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. Journal of Food Science and Technology, 50(2): 275-283.

20.   Trusheva, B., Trunkova, D. and Bankova, V. (2007). Different extraction methods of biologically active     components from propolis; A preliminary study. Chemistry Central Journal, 1(1): 1–4.

21.   Margeretha, I., Suniarti, D. F., Herda, E. and Alim, Z. (2012). Optimization and comparative study of different extraction methods of biologically active components of Indonesian propolis Trigona spp. Journal of Natural Products, 5: 233-242.

22.   Tiveron, A. P., Rosalen, P. L., Franchin, M., Lacerda, R. C. C., Bueno-Silva, B., Benso, B., Denny, C., Ikegaki, M. and De Alencar, S. M. (2016). Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of South Brazilian organic propolis. PLoS ONE, 11(11): 1-18.

23.   Ahmed, I. A., Mikail, M. A., Bin Ibrahim, M., Bin Hazali, N., Rasad, M. S. B. A., Ghani, R. A., Wahab, R. A., Arief, S. J. and Yahya, M. N. A. (2015). Antioxidant activity and phenolic profile of various morphological parts of underutilised Baccaurea angulata fruit. Food Chemistry, 172: 778-787.

24.   Meda, A., Lamien, C. E., Romito, M., Millogo, J. and Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3): 571-577.

25.   Hatano, A., Nonaka, T., Yoshino, M., Ahn, M. R., Tazawa, S., Araki, Y. and Kumazawa, S. (2012). Antioxidant activity and phenolic constituents of red propolis from Shandong, China. Food Science and Technology Research, 18(4): 577-584.

26.   Alvarez-Suarez, J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F., Damiani, E.,Astolfi, P., Bompadre, S. and Battino, M. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48(8–9): 2490-2499.

27.   Spigno, G., Tramelli, L. and De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering, 81(1), 200-208.

28.   Baharuddin, N. A. F., Nordin, M. F. M., Morad, N. A., Aris, N. I. A. and Yunus, M. A. C. (2018). Total phenolic, flavonoid content and antioxidant activity of Clinacanthus nutans leaves by water-based ultrasonic assisted extraction. Malaysian Journal of Analytical Sciences, 22(4): 659-666.

29.   Dent, M., Dragović-Uzelac, V., Penić, M., Brñić, M., Bosiljkov, T. and Levaj, B. (2013). The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technology and Biotechnology, 51(1): 84-91.

30.   Dranca, F. and  Oroian, M. (2017). Total monomeric anthocyanin, total phenolic content and antioxidant activity of extracts from eggplant (Solanum Melongena L.) peel using ultrasonic treatments. Journal of Food Process Engineering, 40(1): 12312.

31.   Miron, T. L., Plaza, M., Bahrim, G., Ibáñez, E. and Herrero, M. (2011). Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. Journal of Chromatography A, 1218(30): 4918-4927.

32.   Gan, C. Y. and Latiff, A. A. (2011). Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chemistry, 124(3): 1277-1283.