Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 483 - 489

 

 

 

 

SIMPLE METHOD DETERMINATION OF SATURATED AND UNSATURATED FATTY ACIDS SOURCES FOR DIESEL-BIODIESEL BLENDS

 

(Kaedah Mudah untuk Penentuan Sumber Asid Tepu dan Taktepu bagi Campuran Diesel-Biodiesel)

 

Nurul Hazwah Mohd Kamarulzaman1, Siti Norhafiza Mohd Khazaai1,2*, Muhammad Nor Fazli Abd Malek1, Mohd Hasbi Ab. Rahim1, Gaanty Pragas Maniam1,3

 

1Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

2Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Jengka, Pahang, Malaysia

3Biotropic Centre Laboratory,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

 

*Corresponding author:  ctnorhafiza03@yahoo.com

 

 

Received: 30 April 2021; Accepted: 6 June 2021; Published:  27 June 2021

 

 

Abstract

Biodiesel is one of the fuel alternatives made from vegetable oils and animal fats that have low emission and biodegradable profiles that are currently being used to reduce pollutions. The optimum parameters for alkali-catalyzed transesterification is 1.5 wt.% of catalyst within 2 hours at 65 ℃, molar ratio methanol to the oil of 9:1. A series of diesel-biodiesel blends of B5, B7, B10, B15 and B20 was prepared by mixing the pure diesel with biodiesel produced. Each of the blends was analyzed using UV-Visible spectroscopy to identify and differentiate the absorbance of the blends. The characterization of diesel-biodiesel (acid value, peroxide value, density, viscosity, moisture content, flash point and refractive index) was performed according to the ASTM method. The UV-Vis analysis of saturated fatty acid and unsaturated fatty acid was compared to prove the suitability of the method used. All the parameters values for the blends meet the requirement of the American Standard Testing Material (ASTM) D6751 except for the moisture content. Rapid determination of blending for both types of fatty acids by UV-Vis analysis was obtained. This may benefit the related industries as well as monetary gain in countering any false claim on the percentage blend with a simple and low-cost method.

 

Keywords:  biodiesel, UV-Vis analysis, rapid analysis

 

Abstrak

Biodiesel merupakan salah satu alternatif bahan bakar yang diperbuat daripada minyak sayuran dan lemak haiwan yang mempunyai tahap penyingkiran yang rendah dan profil biodegradasi bagi mengurangkan pencemaran. Parameter optimum bagi transesterifikasi bermangkin alkali adalah 1.5 wt.% mangkin dalam masa 2 jam pada suhu 65 ℃, dan nisbah metanol kepada minyak ialah 9:1. Suatu siri campuran diesel-biodiesel B5, B7, B10, B15 dan B20 telah disediakan dengan mencampurkan diesel dengan biodiesel yang terhasil. Setiap campuran tersebut dianalisa dengan menggunakan spektroskopi Ultralembayung-nampak (UV-Vis) untuk mengenali dan membezakan penyerapan setiap campuran. Pencirian bagi diesel-biodiesel seperti keasidan, nilai peroksida, ketumpatan, kelikatan, kelembapan, titik cahaya dan indeks refraktif telah dijalankan mengikut kaedah ASTM. Analisa UV-Vis antara asid tepu dan asid tak tepu digunakan untuk melihat kesesuaian kaedah tersebut untuk jenis asid yang berbeza. Semua parameter mematuhi keperluan “American Standard Testing Material” (ASTM) D6751 kecuali kelembapan. Penentuan pantas bagi campuran diesel-biodiesel daripada dua jenis asid yang berbeza telah dijalankan. Ini dapat memberi manfaat kepada industri serta menghalang sebarang kesalahan dalam penentuan peratusan minyak campuran dengan kaedah yang mudah dan murah.

 

Kata kunci:  biodiesel, analisa UV-Vis, analisis pantas

 

References

1.      Knothe, G. (2010). Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science, 36(3): 364–373.

2.      The Star (2020). Bumps expected from B20 rollout. https://www.thestar.com.my/news/nation/ 2020/02/21/bumps-expected-from-b20-rollout. [Access online 20 Mac 2020].

3.      Chong, C. T., Jo-HanNg, B. T., Fan, L., Ni, S., Wong, K. Y. and Hochgreb, S. (2020). Quantification of carbon particulates produced under open liquid pool and prevaporised flame conditions: Waste cooking oil biodiesel and diesel blends. Fuel. 270: 117469.

4.      Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., and Boosroh, M. H. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22: 346-360.

5.      Chattopadhyay, S., Das, S. and Sen, R. (2011). Rapid and precise estimation of biodiesel by high performance thin layer chromatography. Applied Energy, 88(12): 5188-5192.

6.      Zawadzki, A., Shrestha, D. S. and He, B. (2007). Biodiesel blend level detection using ultraviolet absorption spectra. Transactions of The Asabe, 50(2): 1349-1353.

7.      Monteiro, M. R., Ambrozin, A. R. P., Lião, L. M. and Ferreira, A. G. (2009). Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel, 88(4): 691-696. 

8.      Pullen, J. and Saeed, K. (2015). Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Processing Technology, 130: 127-135.

9.      Mathiyazhagan, M. and Ganapathi, A. (2011). Factors affecting biodiesel production. Research in Plant Biology, 1(2): 1-5.

10.   Leung, D. Y. C., Wu, X. and Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4): 1083-1095.

11.   Nierat, T. H., Al-Smadi, D., Musameh, S. M. and Abdel-Raziq, I. R. (2014). Storage age dependence of olive oil acidity in different locations in Palestine. Journal of Physical Science, 25(1): 33-43.

12.   Popa, M., Glevitzky, I., Dumitrel, G.-A., Glevitzky, M. and Popa, D. (2017). Study on peroxide values for different oils and factors affecting the quality of sunflower oil. Series E. Land Reclamation Earth Observation & Surveying, Environmental Engineering, 6: 137-140.

13.   Saxena, P., Jawale, S. and Joshipura, M. H. (2013). A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Engineering, 51: 395-402.

14.   Knothe, G. and Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9): 1059-1065.

15.   Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T. and Boosroh, M. H. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22: 346-360.

16.   Delfino, J. R., Pereira, T. C., Costa Viegas, H. D., Marques, E. P., Pupim Ferreira, A. A., Zhang, L., Zhang, J. and Brandes Marques, A. L. (2017). A simple and fast method to determine water content in biodiesel by electrochemical impedance spectroscopy. Talanta, 179: 753-759.