Malaysian Journal of Analytical Sciences Vol 25 No 3 (2021): 521 - 531

 

 

 

 

PREPARATION OF CERIUM DOPED NICKEL OXIDE for lower REDUCTION temperature IN CARBON MONOXIDE ATMOSPHERE

 

(Penyediaan Serium yang Didopkan ke atas Nikel Oksida untuk Suhu Penurunan Lebih Rendah dalam Atmosfera Karbon Monoksida)

 

Norliza Dzakaria1*, Azizul Hakim Lahuri2, Tengku Shafazila Tengku Saharuddin3, Alinda Samsuri4, Fairous Salleh5, Wan Nor Roslam Wan Isahak6, Muhammad Rahimi Yusop5, Mohd Ambar Yarmo5

 

1Advanced Material for Environmental Remediation (AMER) Research Group, Faculty of Applied Science,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Department of Science and Technology,

Universiti Putra Malaysia Bintulu Campus, 97008 Bintulu, Sarawak, Malaysia

3Faculty of Science and Technology,

Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia

4Department of Chemistry, Centre for Defence Foundation Studies,

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia.

5Catalysis Research Group, School of Chemical Sciences and Food Technology, Faculty of Science and Technology

6Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

*Corresponding author:  norliza864@uitm.edu.my

 

 

Received: 11 May 2021; Accepted: 17 June 2021; Published:  27 June 2021

 

 

Abstract

The reduction behavior of cerium nickel oxide (Ce/NiO) catalyst was investigated by using temperature programmed reduction (TPR) with exposure of 40% (v/v) carbon monoxide (CO) in nitrogen atmosphere as a reductant agent. The Ce/NiO catalysts were prepared by using the conventional impregnation method. The reduction characteristics of NiO to Ni were examined up to 700 ºC and followed by isothermal reduction. The TPR profiles of doped NiO slightly shifted to a lower temperature from 375 to 366 ºC when Ce loading was increased from 3% to 10% (wt./ wt.), respectively. Whereas the undoped NiO was reduced at a higher temperature of 387 ºC. XRD diffractogram of the catalysts showed a complete reduction of NiO to Ni. The interaction between cerium and nickel ions for Ce/NiO series leads to a slight decrease in the reduction temperature. Fine sharp particles of Ce deposited on the NiO surfaces were observed through the FESEM images indicating some morphology modification occurred on NiO. It was found that the addition of 10% (w/w) of Ce on NiO also exhibited a larger BET surface area (11.31 m2g-1) and a smaller average pore diameter (17.7 nm). Based on these results, it is interesting to note that the addition of Ce to NiO has a remarkable influence in reducing the temperature of the reduction process. The 5% Ce/NiO was found sufficient to enhance the reducibility of NiO at a lower temperature.

 

Keywords:  reduction, nickel oxide, cerium, carbon monoxide

 

 

Abstrak

Sifat penurunan nikel oksida (NiO) dan serium (Ce) yang didopkan ke atas NiO (Ce/NiO) telah dikaji menggunakan aturcara suhu penurunan (TPR) dengan kehadiran 40% (v/v) karbon monoksida (CO) dalam nitrogen sebagai penurun. Sampel Ce/NiO disediakan menggunakan kaedah impregnasi. Sifat penurunan NiO kepada Ni dikaji dengan peningkatan suhu sehingga 700 ºC dan diikuti dengan penurunan isoterma. TPR bagi sampel NiO yang telah didop menunjukkan anjakan isyarat penurunan pada suhu yang lebih rendah daripada 375 ºC (3% (bt/bt) Ce/NiO) kepada 365 ºC (10% (bt/bt) Ce/NiO). Manakala NiO sahaja diturunkan pada suhu lebih tinggi 387 ºC. Difraktogram XRD membuktikan penurunan lengkap bagi NiO kepada Ni. Interaksi di antara ion serium dan nikel bagi siri Ce/NiO menyebabkan suhu penurunan yang lebih rendah. Partikel tajam halus Ce yang terenap pada permukaan NiO diperhatikan melalui imej-imej FESEM menunjukkan terdapat pengubahsuaian morfologinya. Penambahan 10% (bt/bt ) Ce pada NiO juga mempamerkan luas permukaan BET yang lebih tinggi (11.31 m2g-1) dan purata diameter liang yang lebih kecil (17.7 nm). Berdasarkan keputusan yang diperolehi, amat menarik untuk menekankan bahawa penambahan Ce ke atas NiO mempunyai pengaruh yang berkesan dalam merendahkan suhu penurunan. Sampel 5% Ce/NiO (bt/bt) didapati mencukupi untuk memperolehi penurunan NiO pada suhu yang lebih rendah.

 

Kata kunci:  penurunan, nikel oksida, serium, karbon monoksida

 

References

1.      Heinrich, V. E. and Cox, P. A. (1994). The surface science of metal oxides. Cambridge University Press, Cambridge.

2.      Pacchioni G. (2000). Ab initio theory of point defects in oxide materials: Structure, properties, chemical reactivity. Solid State Sciences, 2: 161-179.

3.      Maity, A., Ghosh, A. and Majumder, S. B. (2016). Engineered spinel-perovskite composite sensor for selective carbon monoxide gas sensing. Journal of Sensors and Actuators B: Chemical, 15: 1-23.

4.      Moncada, N. G., Navarro, J. C., Odriozola, J. A., Lefferts, L. and Faria, J. A. (2021). Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths. Catalysis Today, In Press.

5.      Dey, S. and Mehta, N. S. (2020). Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions:  A review. Chemical Engineering Journal Advances, 1: 100008.

6.      Janković, B., Adnađević, B. and Mentus, S. (2008). The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chemical Engineering Science. 63: 567-575.

7.      Roy, B. and Leclerc, C. A. (2015). Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol. Journal of Power Sources, 299: 114-124.

8.      Montini, T., Melchionna, M., Monai, M. and Fornasiero, P. (2016). Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 116: 5987-6041.

9.      Vita A. (2020). Catalytic applications of CeO2-based materials. Catalysts, 10: 576-580.

10.   Gangopadhyay, S., Frolov, D., Masunov, A. E. and Seal, S. (2014). Structure and properties of cerium oxides in bulk and nanoparticulate forms. Journal of Alloys and Compounds, 584: 199-208.

11.   Taylor, K. C. (993), Nitric oxide catalysts in automotive systems. Catalysis Reviews Science Engineering, 35: 457-481.

12.   Yao, H. C. and Yao, Y.  F. Y. (1984). Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 86: 254-265.

13.   Kummer, J. T. (1986). Use of noble metals in automobile exhaust catalysts. Journal Physical Chemistry, 90: 4747-4752.

14.   Oh, S. H. (1990). Effect of cerium addition on the CO-RO reaction kinetics over alumina-supported rhodium catalysts. Journal of Catalysis, 124: 477-485.

15.   Oh, S. H. and Eickel, C. C. (1988). Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis. 112: 543-555.

16.   Loof, P., Kasemo B. and Keck, K. E. (1989). Oxygen storage capacity of noble-metal car exhaust catalysts containing nickel and cerium. Journal of Catalysis. 118: 339-348.

17.   Bera, P., Patil, K. C., Jayaram, V., Subbanna, G. N. and Hegde, M. S. (2000). Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal–ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. Journal of Catalysis. 196: 293-301.

18.   Deraz, N. M. (2012). Effect of NiO content on structural, surface and catalytic characteristics of nano-crystalline NiO/CeO2 system. Ceramics International. 38: 747-753.

19.   Castano, C. E., O'Keefe, M. J. and Fahrenholtz, W. G. (2015). Cerium-based oxide coatings. Current Opinion in Solid State & Materials Science, 19: 69-76.

20.   Ashif, H. T., Avinash, A. C., Faheem, A. S., Jin, C. W. and Kim, H. (2015). Synthesis and application of CeO2/NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis. Energy. 89: 568-575.

21.   Wang, J., Shen, M., Wang, J., Yang, M., Wang, W., Ma, J. and Jia, L. (2010). Effects of Ni-doping of ceria-based materials on their micro-structures and dynamic oxygen storage and release behaviors. Catalysis Letter. 140: 38-48.

22.   Zeng, Y. B., Qu, N. S. and Hu, X. Y. (2014). Preparation and characterization of electrodeposited Ni-CeO2 nanocomposite coatings with high current density. International Journal of Electrochemical Science, 9: 8145-8155.

23.   Du, X., Zhang, D., Shi, L., Gao, R. and Zhang, J. (2012). Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. Journal of Physical Chemistry C, 116: 10009-10016.

24.   Lin, X., Zhang, Y., Wang, Z., Wang, R., Zhou, J. and Cen, K. (2014). Hydrogen production by HI decomposition over nickel–ceria–zirconia catalysts via the sulfur–iodine thermochemical water-splitting cycle. Energy Conversion Management, 84: 664 – 670.

25.   Shao, S., Shi, A., Liu, C. L., Yang, R. Z. and Dong, W. S. (2014). Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts. Fuel Processing Technology, 125: 1-7.

26.   Makarshin, L. L., Sadykov, V. A., Andreev, D. V., Gribovskii, A. G., Privezentsev, V. V. and Parmon, V. N. (2015). Syngas production by partial oxidation of methane in a microchannel reactor over a Ni–Pt/La0.2Zr0.4Ce0.4Ox catalyst. Fuel Processing Technology, 131: 21-28.

27.   Hasannejad, H., Shahrab, T. and Jafarian, M. (2012). Synthesis and properties of high corrosion resistant Ni-cerium oxide nano-composite coating. Material Corrosion, 63: 9999-10005.

28.   Dzakaria, N., Abu Tahari, M. N., Saidin, S., Tengku Saharuddin, T. S., Salleh, F., Lahuri, A. H. and Yarmo, M. A. (2020). Effect of cobalt on nickel oxide toward reduction behaviour in hydrogen and carbon monoxide atmosphere. Material Science Forum, 1010: 373-378.

29.   Dzakaria, N., Samsuri, A., Abdul Halim, A., M., Tengku Saharuddin, T. S., Abu Tahari, M. N., Salleh, F., Yusop, M. R., Wan Isahak, W. N. R., Mohamed Hisham, M. W., and Yarmo, M. A. (2020). Chemical reduction behavior of zirconia doped to nickel at different temperature in carbon monoxide atmosphere. Indonesian Journal of Chemistry, 20(1): 105-112.

30.   Bielowicz, B. and Misiak, J. (2020). The impact of coal’s petrographic composition on its suitability for the gasification process: The example of polish deposits. Resources, 9(9): 111.

31.   Van Deventer, J. S. J. (1987). The effect of additives on the reduction of chromite by graphite: An isothermal kinetic study. Thermochim. Acta, 111: 89.

32.   Walker Jr, P. L., Rusinko Jr, F. and Austin, L. G. In Advances in Catalysis (1959). Eds.; Academic  Press, Volume 11: pp 133.

33.   Hunt, J. Ferrari, A. Lita, A. Crosswhite, M. Ashley, B. and Stiegman, A. E. (2013). Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. Journal of Physical Chemistry C, 117 (51): 26871-26880.

34.   Lahuri, A. H., Yarmo, M. A., Marliza, T. S., Abu Tahari, M. N., Samad, W. Z., Dzakaria, N. and Yusop, M. R. (2016). Carbon dioxide adsorption and desorption study using bimetallic calcium oxide impregnated on iron (III) oxide. Materials Science Forum, 888: 479-484.

35.   Lahuri, A. H., Yarmo, M. A., Abu Tahari, M. N., Marliza, T. S., Tengku Saharuddin, T. S., Mark Lee, W. F. and Dzakaria, N. (2020). Comparative adsorption isotherm for beryllium oxide/iron(III) oxide toward CO2 adsorption and desorption studies. Materials Science Forum, 1010: 361-366.

36.   Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A. and Rouquerol, J. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure & Applied Chemistry, 57(4): 603-619.

37.   Condon, J. B. (2006). Surface area and porosity determinations by physisorption measurements and theory, first edition, Elsevier, Netherland.