Malaysian
Journal of Analytical Sciences Vol 25 No 3
(2021): 521 - 531
PREPARATION OF CERIUM DOPED
NICKEL OXIDE for lower REDUCTION temperature IN CARBON MONOXIDE ATMOSPHERE
(Penyediaan Serium yang Didopkan ke
atas Nikel Oksida untuk Suhu Penurunan Lebih Rendah dalam Atmosfera Karbon
Monoksida)
Norliza Dzakaria1*, Azizul Hakim Lahuri2,
Tengku Shafazila Tengku Saharuddin3, Alinda Samsuri4, Fairous Salleh5, Wan Nor Roslam Wan
Isahak6, Muhammad Rahimi Yusop5, Mohd Ambar Yarmo5
1Advanced Material for Environmental Remediation (AMER) Research Group, Faculty
of Applied Science,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah,
72000 Kuala Pilah, Negeri Sembilan, Malaysia
2Department of Science and Technology,
Universiti Putra Malaysia Bintulu Campus, 97008 Bintulu, Sarawak, Malaysia
3Faculty of Science and Technology,
Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri
Sembilan, Malaysia
4Department of Chemistry, Centre for
Defence Foundation Studies,
Universiti
Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia.
5Catalysis Research Group, School of
Chemical Sciences and Food Technology, Faculty of Science and Technology
6Department of Chemical and Process Engineering, Faculty of Engineering
& Built Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
*Corresponding author:  norliza864@uitm.edu.my
Received: 11 May 2021;
Accepted: 17 June 2021; Published:  27
June 2021
Abstract
The reduction behavior of cerium nickel oxide
(Ce/NiO) catalyst was investigated by using temperature programmed reduction
(TPR) with exposure of 40% (v/v) carbon monoxide (CO) in nitrogen atmosphere as
a reductant agent. The Ce/NiO catalysts were prepared by using the conventional
impregnation method. The reduction characteristics of NiO to Ni were examined
up to 700 ºC and followed by isothermal reduction. The TPR profiles of doped
NiO slightly shifted to a lower temperature from 375 to 366 ºC when Ce loading
was increased from 3% to 10% (wt./ wt.), respectively. Whereas the undoped NiO
was reduced at a higher temperature of 387 ºC. XRD diffractogram of the
catalysts showed a complete reduction of NiO to Ni. The interaction between
cerium and nickel ions for Ce/NiO series leads to a slight decrease in the
reduction temperature. Fine sharp particles of Ce deposited on the NiO surfaces
were observed through the FESEM images indicating some morphology modification
occurred on NiO. It was found that the addition of 10% (w/w) of Ce on NiO also
exhibited a larger BET surface area (11.31 m2g-1) and a smaller average pore diameter
(17.7 nm). Based on these results, it is interesting to note that the addition
of Ce to NiO has a remarkable influence in reducing the temperature of the
reduction process. The 5% Ce/NiO was found sufficient to enhance the
reducibility of NiO at a lower temperature.
Keywords:
 reduction, nickel oxide, cerium, carbon monoxide
Abstrak
Sifat
penurunan nikel oksida (NiO) dan serium (Ce) yang didopkan ke atas NiO (Ce/NiO)
telah dikaji menggunakan aturcara suhu penurunan (TPR) dengan kehadiran 40%
(v/v) karbon monoksida (CO) dalam nitrogen sebagai penurun. Sampel Ce/NiO
disediakan menggunakan kaedah impregnasi. Sifat penurunan NiO kepada Ni dikaji
dengan peningkatan suhu sehingga 700 ºC dan diikuti dengan penurunan isoterma.
TPR bagi sampel NiO yang telah didop menunjukkan anjakan isyarat penurunan pada
suhu yang lebih rendah daripada 375 ºC (3% (bt/bt) Ce/NiO) kepada 365 ºC (10% (bt/bt)
Ce/NiO). Manakala NiO sahaja diturunkan pada suhu lebih tinggi 387 ºC.
Difraktogram XRD membuktikan penurunan lengkap bagi NiO kepada Ni. Interaksi di
antara ion serium dan nikel bagi siri Ce/NiO menyebabkan suhu penurunan yang
lebih rendah. Partikel tajam halus Ce yang terenap pada permukaan NiO
diperhatikan melalui imej-imej FESEM menunjukkan terdapat pengubahsuaian
morfologinya. Penambahan 10% (bt/bt ) Ce pada NiO juga mempamerkan luas
permukaan BET yang lebih tinggi (11.31 m2g-1)
dan purata diameter liang yang lebih kecil (17.7 nm). Berdasarkan keputusan
yang diperolehi, amat menarik untuk menekankan bahawa penambahan Ce ke atas NiO
mempunyai pengaruh yang berkesan dalam merendahkan suhu penurunan. Sampel 5%
Ce/NiO (bt/bt) didapati mencukupi untuk memperolehi penurunan NiO pada suhu
yang lebih rendah.
Kata kunci:  penurunan, nikel oksida,
serium, karbon monoksida
References
1.     
Heinrich, V. E. and Cox,
P. A. (1994). The surface science of metal oxides. Cambridge University Press,
Cambridge.
2.     
Pacchioni G. (2000). Ab
initio theory of point defects in oxide materials: Structure, properties,
chemical reactivity. Solid State Sciences,
2: 161-179.
3.     
Maity, A., Ghosh, A. and
Majumder, S. B. (2016). Engineered spinel-perovskite composite sensor for
selective carbon monoxide gas sensing. Journal
of Sensors and Actuators B: Chemical, 15: 1-23.
4.     
Moncada, N. G., Navarro,
J. C., Odriozola, J. A., Lefferts, L. and Faria, J. A. (2021). Enhanced
catalytic activity and stability of nanoshaped Ni/CeO2 for CO2
methanation in micro-monoliths. Catalysis
Today, In Press.
5.     
Dey, S. and Mehta, N. S.
(2020). Oxidation of carbon monoxide over various
nickel oxide catalysts in different conditions:  A review. Chemical Engineering Journal
Advances, 1: 100008.
6.     
Janković, B.,
Adnađević, B. and Mentus, S. (2008). The kinetic study of
temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chemical Engineering Science. 63:
567-575.
7.     
Roy, B. and Leclerc, C.
A. (2015). Study of preparation method and oxidization/reduction effect on the
performance of nickel-cerium oxide catalysts for aqueous-phase reforming of
ethanol. Journal of Power Sources,
299: 114-124.
8.     
Montini, T., Melchionna,
M., Monai, M. and Fornasiero, P. (2016). Fundamentals and catalytic
applications of CeO2-based materials. Chemical Reviews, 116: 5987-6041.
9.     
Vita A. (2020). Catalytic
applications of CeO2-based materials. Catalysts, 10: 576-580.
10.  
Gangopadhyay, S., Frolov,
D., Masunov, A. E. and Seal, S. (2014). Structure and properties of cerium
oxides in bulk and nanoparticulate forms. Journal
of Alloys and Compounds, 584: 199-208.
11.  
Taylor, K. C. (993),
Nitric oxide catalysts in automotive systems. Catalysis Reviews Science Engineering, 35: 457-481. 
12.  
Yao, H. C. and Yao,
Y.  F. Y. (1984). Ceria in automotive
exhaust catalysts: I. Oxygen storage. Journal
of Catalysis, 86: 254-265. 
13.  
Kummer, J. T. (1986). Use
of noble metals in automobile exhaust catalysts. Journal Physical Chemistry, 90: 4747-4752. 
14.  
Oh, S. H. (1990). Effect
of cerium addition on the CO-RO reaction kinetics over alumina-supported
rhodium catalysts. Journal of Catalysis,
124: 477-485. 
15.  
Oh, S. H. and Eickel, C.
C. (1988). Effects of cerium addition on CO oxidation kinetics over
alumina-supported rhodium catalysts. Journal
of Catalysis. 112: 543-555. 
16.  
Loof, P., Kasemo B. and
Keck, K. E. (1989). Oxygen storage capacity of noble-metal car exhaust
catalysts containing nickel and cerium. Journal
of Catalysis. 118: 339-348.
17.  
Bera, P., Patil, K. C.,
Jayaram, V., Subbanna, G. N. and Hegde, M. S. (2000). Ionic dispersion of Pt
and Pd on CeO2 by combustion method: Effect of metal–ceria
interaction on catalytic activities for NO reduction and CO and hydrocarbon
oxidation. Journal of Catalysis. 196:
293-301.
18.  
Deraz,
N. M. (2012). Effect of NiO content on structural, surface and catalytic
characteristics of nano-crystalline NiO/CeO2 system. Ceramics International. 38: 747-753. 
19.  
Castano,
C. E., O'Keefe, M. J. and Fahrenholtz, W. G. (2015). Cerium-based
oxide coatings. Current Opinion in Solid
State & Materials Science, 19: 69-76.
20.  
Ashif,
H. T., Avinash, A. C., Faheem, A. S., Jin, C. W. and Kim, H. (2015). Synthesis and application of
CeO2/NiO loaded TiO2 nanofiber as novel catalyst for
hydrogen production from sodium borohydride hydrolysis. Energy. 89: 568-575. 
21.  
Wang,
J., Shen, M., Wang, J., Yang, M., Wang, W., Ma, J. and Jia, L. (2010). Effects
of Ni-doping of ceria-based materials on their micro-structures and dynamic
oxygen storage and release behaviors. Catalysis
Letter. 140: 38-48.
22.  
Zeng,
Y. B., Qu, N. S. and Hu, X. Y. (2014). Preparation and characterization of electrodeposited
Ni-CeO2 nanocomposite coatings with high current density. International Journal of Electrochemical
Science, 9: 8145-8155.
23.  
Du,
X., Zhang, D., Shi, L., Gao, R. and Zhang, J. (2012). Morphology dependence of
catalytic properties of Ni/CeO2 nanostructures for carbon dioxide
reforming of methane. Journal of Physical
Chemistry C, 116: 10009-10016. 
24.  
Lin,
X., Zhang, Y., Wang, Z., Wang, R., Zhou, J. and Cen, K. (2014). Hydrogen production by HI
decomposition over nickel–ceria–zirconia catalysts via the sulfur–iodine
thermochemical water-splitting cycle. Energy
Conversion Management, 84: 664 – 670. 
25.  
Shao,
S., Shi, A., Liu, C. L., Yang, R. Z. and Dong, W. S. (2014). Hydrogen production from
steam reforming of glycerol over Ni/CeZrO catalysts. Fuel Processing Technology, 125: 1-7. 
26.  
Makarshin,
L. L., Sadykov, V. A., Andreev, D. V., Gribovskii, A. G., Privezentsev, V. V. and Parmon, V. N. (2015). Syngas
production by partial oxidation of methane in a microchannel reactor over a
Ni–Pt/La0.2Zr0.4Ce0.4Ox catalyst. Fuel
Processing Technology, 131:
21-28.
27.  
Hasannejad,
H., Shahrab, T. and Jafarian, M. (2012). Synthesis and properties of high corrosion
resistant Ni-cerium oxide nano-composite coating. Material Corrosion, 63: 9999-10005.
28.  
Dzakaria,
N., Abu Tahari, M. N., Saidin, S., Tengku Saharuddin, T. S., Salleh, F.,
Lahuri, A. H. and Yarmo, M. A. (2020). Effect
of cobalt on nickel oxide toward reduction behaviour in hydrogen and carbon
monoxide atmosphere. Material Science
Forum, 1010: 373-378.
29.  
Dzakaria, N., Samsuri,
A., Abdul Halim, A., M., Tengku Saharuddin, T. S., Abu Tahari, M. N., Salleh,
F., Yusop, M. R., Wan Isahak, W. N. R., Mohamed Hisham, M. W., and Yarmo, M. A.
(2020). Chemical reduction behavior of zirconia doped
to nickel at different temperature in carbon monoxide atmosphere. Indonesian
Journal of Chemistry, 20(1): 105-112.
30.  
Bielowicz, B. and Misiak,
J. (2020). The impact of coal’s petrographic composition on
its suitability for the gasification process: The example of polish
deposits. Resources, 9(9): 111.
31.  
Van Deventer, J. S. J.
(1987). The effect of additives on the reduction of chromite by graphite: An
isothermal kinetic study. Thermochim.
Acta, 111: 89.
32.  
Walker Jr, P. L., Rusinko
Jr, F. and Austin, L. G. In Advances in Catalysis (1959). Eds.; Academic  Press, Volume 11: pp 133.
33.  
Hunt, J. Ferrari, A.
Lita, A. Crosswhite, M. Ashley, B. and Stiegman, A. E. (2013).
Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard)
reaction. Journal of Physical Chemistry C,
117 (51): 26871-26880.
34.  
Lahuri, A. H., Yarmo, M.
A., Marliza, T. S., Abu Tahari, M. N., Samad, W. Z., Dzakaria, N. and Yusop, M. R. (2016). Carbon
dioxide adsorption and desorption study using bimetallic calcium oxide impregnated on iron (III) oxide. Materials
Science Forum, 888: 479-484.
35.  
Lahuri, A. H., Yarmo, M. A., Abu Tahari,
M. N., Marliza, T. S., Tengku Saharuddin, T. S., Mark Lee, W. F. and Dzakaria,
N. (2020). Comparative adsorption isotherm for beryllium oxide/iron(III) oxide
toward CO2 adsorption and desorption studies. Materials Science Forum, 1010: 361-366.
36.  
Sing, K. S. W., Everett,
D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A. and Rouquerol, J. (1985).
Reporting physisorption data for gas/solid systems with special reference to the
determination of surface area and porosity. Pure & Applied Chemistry,
57(4): 603-619.
37.  
Condon, J. B. (2006). Surface area and
porosity determinations by physisorption measurements and theory, first
edition, Elsevier, Netherland.