Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 81 - 94
STUDYING THE
PERFORMANCE OF DIAPER CHAR PRODUCED VIA PYROLYSIS AS AN EFFICIENT ADSORBENT FOR
LEAD REMOVAL
(Mengkaji Prestasi Char Lampin yang Dihasilkan Melalui Pirolisis Sebagai
Penjerap Berkesan untuk Penyingkiran Plumbum)
Najiyatul
Munirah Yasin, Siti Nurul Hidayah Badrul Hisham, Najaa Nur Atiqah Rozulan, Nurul
Ashraf Razali*
Faculty
of Ocean Engineering Technology and Informatics,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: Nrazali@umt.edu.my
Received: 17 August 2020;
Accepted: 28 December 2020; Published: 20
February 2021
Abstract
Industrial wastewater contains heavy metal ions that are harmful to the
environment. This work aims to study the performance of the adsorbent from
diaper char (DC) and activated DC for lead (Pb) removal. The morphology of the
adsorbent was characterised using scanning electron microscopy (SEM), X-ray
diffraction (XRD), and Fourier transform infrared (FTIR) analysis. DC was
prepared via pyrolysis and activated
using zinc chloride (ZnCl2, 0.5 M) and potassium hydroxide (KOH, 0.5 M). The efficiency of the adsorbent was analysed using synthetic
Pb. About 96.6% of Pb2+ removal was observed upon the
introduction of 1 g/L of DC in 20
mg/L of Pb2+ solution for 25 min at pH 7. Also, adsorption occurred
rapidly even in 5 min (94%). The efficiency of the adsorbent to remove Pb2+
was then tested for DC activated using ZnCl2 and KOH. DC-ZnCl2
(99.8%) showed higher percentage removal of Pb2+ than DC-KOH
(98.2%). The adsorption behaviour was fixed with the Freundlich isotherm model
(R2 = 0.9202) with the maximum adsorption capacity of 7.626 mg/g,
where the results indicated a multilayer adsorption mechanism. The findings
showed that DC can be utilised as the adsorbent for Pb removal and also
demonstrate excellent alternative use of abundant diaper waste.
Keyword: adsorption,
diaper char, isotherm, lead
Abstrak
Air sisa buangan industri
mengandungi ion logam berat yang berbahaya kepada alam sekitar. Hasil kajian
ini bertujuan mengkaji prestasi penjerap daripada char lampin (DC) dan DC
teraktif untuk penyingkiran plumbum. Morfologi penjerap dikategorikan dengan
menggunakan analisis mikroskop elektron pengimbas (SEM), belauan sinar-X (XRD),
dan inframerah transformasi Fourier (FTIR). Penyediaan DC dilakukan melalui
teknik pirolisis dan diaktifkan menggunakan zink klorida (ZnCl2, 0.5
M) dan kalium hidroksida (KOH, 0.5 M). Kecekapan penjerap dianalisis dengan
menggunakan plumbum sintetik. Kajian menunjukkan bahawa 96.6% penyingkiran
plumbum telah dicatatkan apabila 1 g/L
DC ditambah dan kepekatan awal
plumbum adalah 20 mg/L dalam 25 minit dan pada pH 7. Kecekapan penjerap juga berlaku pada kadar yang
cepat dalam 5 minit (94%). Kecekapan penjerap untuk menyingkirkan plumbum
kemudian diuji menggunakan DC yang telah diaktifkan menggunakan ZnCl2
dan KOH. DC-ZnCl2 (99.8%) memberikan peratusan penyingkiran plumbum
yang lebih tinggi berbanding DC-KOH (98.2%). Tingkah laku penjerapan diperbaiki
dengan model isoterma Freundlich (R2 = 0.9202) dengan kapasiti
penjerapan maksimum 7.626 mg/g, di mana hasilnya menunjukkan mekanisme
penjerapan pelbagai lapisan. Hasil kajian menunjukkan bahawa DC boleh digunakan
sebagai penjerap untuk penyingkiran plumbum dan juga alternatif terbaik
penggunaan sisa lampin yang banyak.
Kata kunci: penjerapan, char lampin,
isoterma, plumbum
References
1.
Chu, B., Amano, Y. and
Machida, M. (2020). Preparation of bean dreg derived n-doped activated carbon
with high adsorption for Cr(VI). Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 586:
124262.
2.
Lai, K. C., Lee, L. Y.,
Hiew, B. Y. Z., Thangalazhy-Gopakumar, S. and Gan, S. (2019). Environmental
application of three-dimensional graphene materials as adsorbents for dyes and
heavy metals: Review on ice-templating method and adsorption mechanisms. Journal of Environmental Sciences, 79:
174-199.
3.
Vareda, J. P., Valente,
A. J. M. and Durães, L. (2019). Assessment of heavy metal pollution from
anthropogenic activities and remediation strategies: A review. Journal of Environmental Management,
246: 101-118.
4.
Joseph, L., Jun, B. M.,
Flora, J. R. V., Park, C. M. and Yoon, Y. (2019). Removal of heavy metals from
water sources in the developing world using low-cost materials: A review. Chemosphere, 229: 142-159.
5.
Zhang, H., Xu, F., Xue, J.,
Chen, S., Wang, J. and Yang, Y. (2020). Enhanced removal of heavy metal ions
from aqueous solution using manganese dioxide-loaded biochar: Behavior and
mechanism. Scientific Reports, 10(1):
1-13.
6.
Pyrzynska, K. (2019).
Removal of cadmium from wastewaters with low-cost adsorbents. Journal of Environmental Chemical
Engineering, 7(1): 102795.
7.
Vardhan, K. H., Kumar, P.
S. and Panda, R. C. (2019). A review on
heavy metal pollution, toxicity and remedial measures: Current trends and
future perspectives. Journal of Molecular
Liquids, 290: 111197.
8.
Malaysia, G. (1974).
Environmental Act Quality 1974. Environmental Act Quality 1974: pp. 57.
9.
Lestari, P. and
Trihadiningrum, Y. (2019). The impact of improper solid waste management to
plastic pollution in Indonesian coast and marine environment. Marine Pollution Bulletin, 149: 110505.
10.
Liu, Y. and Wang, J.
(2020). Treatment of fresh leachate from a municipal solid waste incineration
plant by combined radiation with coagulation process. Radiation Physics and Chemistry, 166: 108501.
11.
The Star (2016). Soiled
Diapers Stuck in Landfills Access from https://www.thestar.com.my/metro/community/
2016/05/23/soiled-diapers-stuck-in-landfills-recycling-is-the-way-forward-says-expert/#:~:text=Malaysians
use about 9.72 million, and 0.5kg a piece. [Accessed online 01 December 2020].
12.
Uroševic, T. and
Pešovski, B. (2018). A review on adsorbents for treatment of water and
wastewaters containing copper ions. Chemical
Engineering Science, 192: 273-287.
13.
Gunarathne, V., Ashiq,
A., Ramanayaka, S., Wijekoon, P. and Vithanage, M. (2019). Biochar from
municipal solid waste for resource recovery and pollution remediation. Environmental Chemistry Letters, 17:
1225-1235.
14.
Guo, F., Peng, K., Liang,
S., Jia, X., Jiang, X. and Qian, L. (2019). Evaluation of the catalytic
performance of different activated biochar catalysts for removal of tar from
biomass pyrolysis. Fuel, 258: 116204.
15.
Dacres, O. D., Tong, S.,
Li, X., Sun, Y., Wang, F., Luo, G., Liu, H., Hu, H. and Yao, H. (2020). Gas-pressurized torrefaction
of biomass wastes: the effect of varied pressure on pyrolysis kinetics and
mechanism of torrefied biomass. Fuel,
276: 118132.
16.
Shen, Q., Wang, Z., Yu,
Q., Cheng, Y., Liu, Z., Zhang, T. and Zhou, S. (2020). Removal of tetracycline
from an aqueous solution using manganese dioxide modified biochar derived from
Chinese herbal medicine residues. Environmental
Research, 183: 109195.
17.
Oh, T. K. and Shinogi, Y.
(2013). Characterization of the pyrolytic solid derived from used disposable
diapers. Environmental Technology,
34: 3153-3160.
18.
Zhang, J., Shao, J., Jin,
Q., Zhang, X., Yang, H., Chen, Y., Zhnag, S. and Chen, H. (2020). Effect of
deashing on activation process and lead adsorption capacities of sludge-based
biochar. Science of the Total
Environment, 716: 137016.
19.
Heidarinejad, Z.,
Dehghani, M. H., Heidari, M., Javedan, G., Ali, I. and Sillanpää, M. (2020).
Methods for preparation and activation of activated carbon: A review. Environmental Chemistry Letters, 18(2):
393-415.
20.
Sajjadi, B., Chen, W. Y.,
Mattern, D. L., Hammer, N. and Dorris, A. (2020). Low-temperature
acoustic-based activation of biochar for enhanced removal of heavy metals. Journal of Water Process Engineering,
34: 101166.
21.
Chen, Y., Zhu, Y., Wang,
Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y. and Guo, Y. (2011). Application
studies of activated cabon derived from rice husks produced by chemical-thermal
process - A review. Advances in Colloid
and Interface Science, 163(1): 39-52.
22.
Burakov, A. E., Galunin,
E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G. and
Gupta, V. K. (2018). Adsorption of heavy metals on conventional and
nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148:
702-712.
23.
Wani, A. L., Ara,
A., and Usmani, J. A. (2015). Lead toxicity: A review. Interdisciplinary Toxicology,
8(2): 55-64.
24.
Lam, S. S., Wan Mahari,
W. A., Ma, N. L., Azwar, E., Kwon, E. E., Peng, W., Chong, T. C., Liu, Z., and
Park, Y-K. (2019). Microwave pyrolysis valorization of used baby diaper. Chemosphere, 230: 294-302.
25.
Khan, M. A., Alemayehu,
A., Duraisamy, R., and Berekete, A. K. (2015). Removal of lead ion from aqueous
solution by bamboo activated carbon. International Journal of Water Resource,
5: 33-46.
26.
Syafiuddin, A., Salmiati,
S., Jonbi, J. and Fulazzaky, M. A. (2018). Application of the kinetic and
isotherm models for better understanding of the behaviors of silver
nanoparticles adsorption onto different adsorbents. Journal of Environmental Management, 218(20): 59-70.
27.
Muhammad, W., Ullah, N.,
Haroon, M. and Abbasi, B. H. (2019). Optical, morphological and Biological
Analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum
L. RSC Advances, 9: 29541-29548.
28.
Nam, H., Wang, S. and
Jeong, H. R. (2018). TMA and H2S gas removals using metal loaded on
rice husk activated carbon for indoor air purification. Fuel, 213: 186-194.
29.
Mahdi, Z., Yu, Q. J. and
El Hanandeh, A. (2018). Removal of lead (II) from aqueous solution using date
seed-derived biochar: Batch and column studies. Applied Water Science, 8: 1-13.
30.
Singh, E., Kumar, A.,
Mishra, R., You, S., Singh, L., Kumar, S. and Kumar, R. (2021). Pyrolysis of
waste biomass and plastics for production of biochar and its use for removal of
heavy metals from aqueous solution. Bioresouresource Technology. 320:
124278.
31.
Hamzah, S., Yatim, N. I.,
Alias, M., Ali, A., Rasit, N. and Abuhabib, A. (2019). Extraction of
hydroxyapatite from fish scales and its integration with rice husk for ammonia
removal in aquaculture wastewater extraction of hydroxyapatite from fish scales
and its integration with rice husk for ammonia removal in aquaculture
wastewater. Indonesia Journal of
Chemistry, 19: 1019-1030.
32.
Hamzah, S., Razali, N.,
Yatim, N. I., Alias, M., Ali, A., Zaini,
N. S. and Abuhabib, A. A. (2018). Characterisation and performance of thermally
treated rice husk as efficient adsorbent for phosphate removal. Journal Water Supply Resources Technology, 67(8):
766-778.
33.
Abbar, B., Alema, A.,
Marcotte, S., Pantet, A., Ahfir, N., Bizet, L. and Duriatti, D. (2017).
Experimental investigation on removal of heavy metals (Cu2+, Pb2+
and Zn2+) from aqueous solution by flax fibres. Process Safety
and Environmental Protection, 109: 639-647,
34.
Bedia, J., Peñas-Garzón,
M., Gómez-Avilés, A., Rodriguez, J. J. and Belver, C. (2020) Review on
activated carbons by chemical activation with FeCl3. Journal of Carbon Research, 6: 1-25.
35.
Rodríguez, C., Tapia, C.,
Leiva-Aravena, E. and Leiva, E. (2020). Graphene oxide–ZnO nanocomposites for
removal of aluminum and copper ions from acid mine drainage wastewater. International Journal of Environmental
Research and Public Health, 17: 1-18.