Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 81 - 94

 

 

 

 

STUDYING THE PERFORMANCE OF DIAPER CHAR PRODUCED VIA PYROLYSIS AS AN EFFICIENT ADSORBENT FOR LEAD REMOVAL

 

(Mengkaji Prestasi Char Lampin yang Dihasilkan Melalui Pirolisis Sebagai Penjerap Berkesan untuk Penyingkiran Plumbum)

 

Najiyatul Munirah Yasin, Siti Nurul Hidayah Badrul Hisham, Najaa Nur Atiqah Rozulan, Nurul Ashraf Razali*

 

Faculty of Ocean Engineering Technology and Informatics,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  Nrazali@umt.edu.my

 

 

Received: 17 August 2020; Accepted: 28 December 2020; Published:  20 February 2021

 

 

Abstract

Industrial wastewater contains heavy metal ions that are harmful to the environment. This work aims to study the performance of the adsorbent from diaper char (DC) and activated DC for lead (Pb) removal. The morphology of the adsorbent was characterised using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. DC was prepared via pyrolysis and activated using zinc chloride (ZnCl2, 0.5 M) and potassium hydroxide (KOH, 0.5 M). The efficiency of the adsorbent was analysed using synthetic Pb. About 96.6% of Pb2+ removal was observed upon the introduction of 1 g/L of DC in 20 mg/L of Pb2+ solution for 25 min at pH 7. Also, adsorption occurred rapidly even in 5 min (94%). The efficiency of the adsorbent to remove Pb2+ was then tested for DC activated using ZnCl2 and KOH. DC-ZnCl2 (99.8%) showed higher percentage removal of Pb2+ than DC-KOH (98.2%). The adsorption behaviour was fixed with the Freundlich isotherm model (R2 = 0.9202) with the maximum adsorption capacity of 7.626 mg/g, where the results indicated a multilayer adsorption mechanism. The findings showed that DC can be utilised as the adsorbent for Pb removal and also demonstrate excellent alternative use of abundant diaper waste.

 

Keyword:  adsorption, diaper char, isotherm, lead

 

Abstrak

Air sisa buangan industri mengandungi ion logam berat yang berbahaya kepada alam sekitar. Hasil kajian ini bertujuan mengkaji prestasi penjerap daripada char lampin (DC) dan DC teraktif untuk penyingkiran plumbum. Morfologi penjerap dikategorikan dengan menggunakan analisis mikroskop elektron pengimbas (SEM), belauan sinar-X (XRD), dan inframerah transformasi Fourier (FTIR). Penyediaan DC dilakukan melalui teknik pirolisis dan diaktifkan menggunakan zink klorida (ZnCl2, 0.5 M) dan kalium hidroksida (KOH, 0.5 M). Kecekapan penjerap dianalisis dengan menggunakan plumbum sintetik. Kajian menunjukkan bahawa 96.6% penyingkiran plumbum telah dicatatkan apabila 1 g/L DC ditambah dan kepekatan awal plumbum adalah 20 mg/L dalam 25 minit dan pada pH 7ppppdari . Kecekapan penjerap juga berlaku pada kadar yang cepat dalam 5 minit (94%). Kecekapan penjerap untuk menyingkirkan plumbum kemudian diuji menggunakan DC yang telah diaktifkan menggunakan ZnCl2 dan KOH. DC-ZnCl2 (99.8%) memberikan peratusan penyingkiran plumbum yang lebih tinggi berbanding DC-KOH (98.2%). Tingkah laku penjerapan diperbaiki dengan model isoterma Freundlich (R2 = 0.9202) dengan kapasiti penjerapan maksimum 7.626 mg/g, di mana hasilnya menunjukkan mekanisme penjerapan pelbagai lapisan. Hasil kajian menunjukkan bahawa DC boleh digunakan sebagai penjerap untuk penyingkiran plumbum dan juga alternatif terbaik penggunaan sisa lampin yang banyak.

 

Kata kunci:  penjerapan, char lampin, isoterma, plumbum

 

References

1.      Chu, B., Amano, Y. and Machida, M. (2020). Preparation of bean dreg derived n-doped activated carbon with high adsorption for Cr(VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586: 124262.

2.      Lai, K. C., Lee, L. Y., Hiew, B. Y. Z., Thangalazhy-Gopakumar, S. and Gan, S. (2019). Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms. Journal of Environmental Sciences, 79: 174-199.

3.      Vareda, J. P., Valente, A. J. M. and Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246: 101-118.

4.      Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M. and Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229: 142-159.

5.      Zhang, H., Xu, F., Xue, J., Chen, S., Wang, J. and Yang, Y. (2020). Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Scientific Reports, 10(1): 1-13.

6.      Pyrzynska, K. (2019). Removal of cadmium from wastewaters with low-cost adsorbents. Journal of Environmental Chemical Engineering, 7(1): 102795.

7.      Vardhan, K. H., Kumar, P. S. and  Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290: 111197.

8.      Malaysia, G. (1974). Environmental Act Quality 1974. Environmental Act Quality 1974: pp. 57.

9.      Lestari, P. and Trihadiningrum, Y. (2019). The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment. Marine Pollution Bulletin, 149: 110505.

10.   Liu, Y. and Wang, J. (2020). Treatment of fresh leachate from a municipal solid waste incineration plant by combined radiation with coagulation process. Radiation Physics and Chemistry, 166: 108501.

11.   The Star (2016). Soiled Diapers Stuck in Landfills Access from https://www.thestar.com.my/metro/community/ 2016/05/23/soiled-diapers-stuck-in-landfills-recycling-is-the-way-forward-says-expert/#:~:text=Malaysians use about 9.72 million, and 0.5kg a piece. [Accessed online 01 December 2020].

12.   Uroševic, T. and Pešovski, B. (2018). A review on adsorbents for treatment of water and wastewaters containing copper ions. Chemical Engineering Science, 192: 273-287.

13.   Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. and Vithanage, M. (2019). Biochar from municipal solid waste for resource recovery and pollution remediation. Environmental Chemistry Letters, 17: 1225-1235.

14.   Guo, F., Peng, K., Liang, S., Jia, X., Jiang, X. and Qian, L. (2019). Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 258: 116204.

15.   Dacres, O. D., Tong, S., Li, X., Sun, Y., Wang, F., Luo, G., Liu, H., Hu, H. and  Yao, H. (2020). Gas-pressurized torrefaction of biomass wastes: the effect of varied pressure on pyrolysis kinetics and mechanism of torrefied biomass. Fuel, 276: 118132.

16.   Shen, Q., Wang, Z., Yu, Q., Cheng, Y., Liu, Z., Zhang, T. and Zhou, S. (2020). Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environmental Research, 183: 109195.

17.   Oh, T. K. and Shinogi, Y. (2013). Characterization of the pyrolytic solid derived from used disposable diapers. Environmental Technology, 34: 3153-3160.

18.   Zhang, J., Shao, J., Jin, Q., Zhang, X., Yang, H., Chen, Y., Zhnag, S. and Chen, H. (2020). Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. Science of the Total Environment, 716: 137016.

19.   Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I. and Sillanpää, M. (2020). Methods for preparation and activation of activated carbon: A review. Environmental Chemistry Letters, 18(2): 393-415.

20.   Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N. and Dorris, A. (2020). Low-temperature acoustic-based activation of biochar for enhanced removal of heavy metals. Journal of Water Process Engineering, 34: 101166.

21.   Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L., Gao, X., Ma, Y. and Guo, Y. (2011). Application studies of activated cabon derived from rice husks produced by chemical-thermal process - A review. Advances in Colloid and Interface Science, 163(1): 39-52.

22.   Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G. and Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148: 702-712.

23.   Wani, A. L., Ara, A., and Usmani, J. A. (2015). Lead toxicity: A review.  Interdisciplinary Toxicology, 8(2): 55-64.

24.   Lam, S. S., Wan Mahari, W. A., Ma, N. L., Azwar, E., Kwon, E. E., Peng, W., Chong, T. C., Liu, Z., and Park, Y-K. (2019). Microwave pyrolysis valorization of used baby diaper. Chemosphere, 230: 294-302.

25.   Khan, M. A., Alemayehu, A., Duraisamy, R., and Berekete, A. K. (2015). Removal of lead ion from aqueous solution by bamboo activated carbon. International Journal of Water Resource, 5: 33-46.

26.   Syafiuddin, A., Salmiati, S., Jonbi, J. and Fulazzaky, M. A. (2018). Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. Journal of Environmental Management, 218(20): 59-70.

27.   Muhammad, W., Ullah, N., Haroon, M. and Abbasi, B. H. (2019). Optical, morphological and Biological Analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances, 9: 29541-29548.

28.   Nam, H., Wang, S. and Jeong, H. R. (2018). TMA and H2S gas removals using metal loaded on rice husk activated carbon for indoor air purification. Fuel, 213: 186-194.

29.   Mahdi, Z., Yu, Q. J. and El Hanandeh, A. (2018). Removal of lead (II) from aqueous solution using date seed-derived biochar: Batch and column studies. Applied Water Science, 8: 1-13.

30.   Singh, E., Kumar, A., Mishra, R., You, S., Singh, L., Kumar, S. and Kumar, R. (2021). Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresouresource Technology. 320: 124278.

31.   Hamzah, S., Yatim, N. I., Alias, M., Ali, A., Rasit, N. and Abuhabib, A. (2019). Extraction of hydroxyapatite from fish scales and its integration with rice husk for ammonia removal in aquaculture wastewater extraction of hydroxyapatite from fish scales and its integration with rice husk for ammonia removal in aquaculture wastewater. Indonesia Journal of Chemistry, 19: 1019-1030.

32.   Hamzah, S., Razali, N., Yatim, N. I., Alias, M., Ali, A.,  Zaini, N. S. and Abuhabib, A. A. (2018). Characterisation and performance of thermally treated rice husk as efficient adsorbent for phosphate removal. Journal Water Supply Resources Technology, 67(8): 766-778.

33.   Abbar, B., Alema, A., Marcotte, S., Pantet, A., Ahfir, N., Bizet, L. and Duriatti, D. (2017). Experimental investigation on removal of heavy metals (Cu2+, Pb2+ and Zn2+) from aqueous solution by flax fibres. Process Safety and Environmental Protection, 109: 639-647,

34.   Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J. and Belver, C. (2020) Review on activated carbons by chemical activation with FeCl3. Journal of Carbon Research, 6: 1-25.

35.   Rodríguez, C., Tapia, C., Leiva-Aravena, E. and Leiva, E. (2020). Graphene oxide–ZnO nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. International Journal of Environmental Research and Public Health, 17: 1-18.