Malaysian
Journal of Analytical Sciences Vol 25 No 1
(2021): 105 - 118
COPOLYMERISATION OF METHYL METHACRYLATE AND HYDROXYPROPYL
METHYLCELLULOSE VIA EMULSION POLYMERISATION TECHNIQUE
(Pengkopolimeran Metil
Metakrilat dan Hidroksipropil Metilselulosa Melalui Teknik Pempolimeran Emulsi)
Noor Aniza Harun1,2*,
Liew Pei Chen1, Anis Arina Zainudin1, Tan Yea Tzy1,
Farhanini Yusoff1
1Faculty of Science and Marine Environment,
2Advanced Nano Materials (ANOMA) Research
Group, Faculty of Science and Marine Environment,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding
author: nooraniza@umt.edu.my
Received: 22 September 2020;
Accepted: 29 November 2020; Published: 20
February 2021
Abstract
Copolymerisation between methyl methacrylate (MMA) and
hydroxypropyl methylcellulose
(HPMC) to produce poly(methyl methacrylate-co-hydroxypropyl methylcellulose) P(MMA-co-HPMC)
nanoparticles was successfully prepared via an emulsion polymerisation technique. The effects of
different molar ratios of MMA and HPMC monomers towards the copolymer formation,
morphology, thermal stability and solubility were thoroughly discussed.
Homopolymerisation of poly(methyl methacrylate) (P(MMA)) and poly(hydroxylpropyl
methylcellulose) (P(HPMC)) was also carried out as control via emulsion
polymerisation. Sodium dodecyl sulphate (SDS) and potassium persulfate (KPS) were used as anionic
surfactant and water-soluble initiator, respectively, throughout the emulsion polymerisation
process. The formation of copolymer
P(MMA-co-HPMC) and homopolymers of P(MMA) and P(HPMC)
nanoparticles was
confirmed by Fourier transform infrared spectroscopy (FTIR). The morphology of copolymer and homopolymer nanoparticles was determined
using scanning electron microscopy
(SEM). The decomposition rate of homopolymer and copolymer nanoparticles was verified using thermogravimetric
analysis (TGA) technique. Meanwhile, the hydrophilicity of homopolymer and copolymer
nanoparticles was determined by a simple solubility test to obtain their degree of
solubility in aqueous medium. It was found that the copolymers formed with
higher molar ratios of MMA monomers
were less thermally stable and possessed lower rates of solubility than that of
the higher molar
ratios of HPMC monomers.
Keywords: methyl methacrylate, hydroxypropyl methylcellulose, copolymerization, emulsion polymerization,
hydrophilic nanoparticles
Abstrak
Pengkopolimeran
di antara metil metakrilat (MMA) dan hidroksilpropil metilselulosa (HPMC) untuk menghasilkan nanopartikel poli(metil metakrilat-ko-hidroksilpropil metilselulosa) (P(MMA-ko-HPMC))
berjaya disediakan melalui teknik pempolimeran emulsi. Kesan nisbah molar
yang berlainan daripada monomer MMA dan HPMC terhadap pembentukan
kopolimer, morfologi, kestabilan haba dan kelarutan telah dibincangkan dengan jelas.
Penghomopolimeran poli(metil metakrilat) (P(MMA)) dan poli(hidroksilpropil
metilselulosa) (P(HPMC)) juga dijalankan sebagai kawalan melalui pempolimeran emulsi. Sodium
dodesil sulfat dan kalium persulfat digunakan sebagai surfaktan anionik dan agen
pemula di sepanjang tindak balas pempolimeran emulsi. Pembentukan nanopartikel
kopolimer P(MMA-ko-HPMC) dan homopolimer P(MMA) dan P(HPMC) telah disahkan oleh
puncak penyerapan spektroskopi infra-merah Fourier (FTIR). Morfologi nanopartikel
kopolimer dan homopolimer ditentukan dengan menggunakan mikroskopi pengimbasan
elektron (SEM). Kadar penguraian nanopartikel homopolimer dan kopolimer ditentukan
dengan menggunakan teknik termogravimetrik (TGA). Manakala keterlarutan
homopolimer dan kopolimer nanopartikel ditentukan oleh ujian kelarutan mudah bagi
menentukan tahap keterlarutan di dalam medium akues. Ianya didapati bahawa
kopolimer yang terbentuk dengan nisbah molar monomer MMA yang lebih tinggi
mempunyai kestabilan haba yang lebih rendah dan mempunyai kadar kelarutan yang lebih
rendah daripada nisbah molar monomer HPMC yang tinggi.
Kata kunci: metil metakrilat, hidroksilpropil
metilselulosa, pengkopolimeran, pempolimeran emulsi, nanopartikel hidrofilik
References
1.
Nagavarma, B. V. N.,
Hemant, K. S. Y., Ayaz, A., Vasudha, L. S. and Shivakumar, H. G. (2012).
Different technique for preparation of polymeric nanoparticles – a review. Asian Journal of Pharmaceutical and Clinical
Research, 5(3): 16-23.
2.
Kumari, A., Yadav, S. K.
and Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery
system. Colloids and Surfaces B:
Biointerfaces, 75(1): 1-18.
3.
Liang, Y., Yun, W.,
Maozhi, P., Garry, L. R. and Qinmin, P. (2013). Synthesis of poly(methyl
methacrylate) nanoparticles via differential microemulsion polymerization. European Polymer Journal, 49(1): 41-48.
4.
Dusadee, T., Garry, L. R.
and Pattarapan, P. (2017). Preparation of poly(methyl methacrylate)-silica
nanoparticles via differential microemulsion polymerization and physical
properties of NR/PMMA-SiO2 hybrid membranes. Polymer Engineering & Science, 58(5): 759-766.
5.
Ismail, Z. and Harun, N.
A. (2019). Synthesis and characterizations of hydrophilic PHEMA nanoparticles
via inverse miniemulsion polymerization. Sains
Malaysiana, 48(8): 1753-1759.
6.
Kamaruddin, N. N.,
Kassim, S. and Harun, N. A. (2017). Volume effect of non-polar solvent towards
the synthesis of hydrophilic polymer nanoparticles prepares via inverse
miniemulsion polymerization. AIP
Conference Proceedings, 1885: 020056.
7.
Harun, N. A., Md Tahier,
N., Kamaruddin, N. N., Mamat, M. and Kassim, S. (2018). Emulsion polymerization
of poly(methacrylic acid) nanoparticles: Effects of different cationic
surfactants. Asian Journal of Chemistry,
30 (10): 2299-2304.
8.
Harun, N. A., Tzy, T. Y.,
Chen, L. P. Zainuddin, A. A. and Kassim, S. (2019). Copolymerization of
methacrylic acid (MAA) and butyl acrylate (BuA) via emulsion polymerization
technique. Malaysian Journal of Chemistry,
21(3): 20-28
9.
Nopparat, V. and Panya,
S. (2020). Synthesis of crosslinked poly(methacrylic acid) shell/ lipid core
colloidal nanoparticles via L-in-Lm interfacial polymerization and
their pH responsiveness. Colloids and
Surfaces A; Physicochemical and Engineering Aspects, 603: 125180.
10.
Rao, J. P. and Geckeler, K. E.
(2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7): 887-913.
11.
José, M. A. (2004). Emulsion polymerization: From
fundamental mechanisms to process developments. Journal of Polymer Science
Part A: Polymer Chemistry 42(5):
1025-1042.
12.
Thickett, S. C. and Gilbert, R. G.
(2007) Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 48(24):
6965-6991.
13.
Shalviri, A., Raval, G., Prasad, P.,
Chan, C., Liu, Q., Herrklotz, H., Rauth, A. M. and Wu, X. Y. (2012). pH-dependent
doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles
for overcoming multidrug resistance in human breast cancer cells. European Journal of Pharmaceutics and
Biopharmaceutics, 82(3): 587-597.
14.
Baek, H. H., Lee, J. M., Cho, J. E.,
Kim, J. H. and Cheong, I. W. (2010). Hydroxypropyl methylcellulose-graft-poly(ethyl
acrylate-co-methyl methacrylate) particles by resin emulsion polymerization. Macromolecule Research, 18(1): 53-58.
15.
Mondal, S., Gupta, B. and Sing, H.
(2005). Acrylic monomers based emulsion copolymer for coating application. Indian Journal of Fibre and Textile Research, 30: 184-189.
16.
Joshi,J. R. and Patel, R. P. (2012).
Role of biodegradable polymers in drug delivery. International Journal of
Current Pharmaceutical Research, 4(4): 74.
17.
Tian, H. Y., Tang, Z. H., Zhuang, X.
L., Chen, X. S. and Jing, X. B. (2012). Biodegradable synthetic polymers: preparation,
functionalization and biomedical application. Progress in Polymer Science, 37(2): 237-280.
18.
Lu, T., Liu, X. Y., Qi, D. M. and
Zhao, H. T. (2015). Effect of hydrophobic monomer on the aqueous dispersion polymerization
of acrylamide with quaternary ammonium cationic
monomer. Iranian Polymer Journal,
24(3): 219-227.
19.
Wu, B., Lenz, R. W. and Hazer, B.
(1999). Polymerization of methyl methacrylate and its copolymerization with
ε-caprolactone catalyzed by isobutylalumoxane catalyst. Macromolecules, 32(20):
6856-6859.
20.
Miranda, A., Mill, M. and Caraballo,
I. (2006). Study of the critical points of HPMC hydrophilic matrices for controlled
drug delivery. International Journal of Pharmaceutics, 311(1-2): 75-81.
21.
Ding, C. C., Li, G. Y. and Zhang, M.
(2015). Preparation and characterization of collagen/hydroxypropyl
methylcellulose (HPMC) blend film. Carbohydrate
Polymer, 119:
194-201.
22.
Wayne, N. A., Stephen, P. D. and
Samual, L. E. (2014). Ageing and moisture uptake in polymethyl methacrylate
(PMMA) bone cements. Journal of
the Mechanical Behavior of Biomedical Materials,
32(100): 76-88.
23.
Fatimah, A., Amir, H. N. and
Francesco, P. (2019). Material encapsulation in poly(methyl methacrylate)
shell: A review. Journal of
Applied Polymer, 136(41): 48039.
24.
Wu, H. C., Du, S. Y., Lu, Y., Li, Y.
and Wang, D. (2014). The application of biomedical polymer material hydroxy propyl
methyl cellulose (HPMC) in pharmaceutical preparations. Journal
of Chemical and Pharmaceutical Research, 6(5):
155-160.