Malaysian Journal of Analytical Sciences Vol 25 No 1 (2021): 105 - 118

 

 

 

 

COPOLYMERISATION OF METHYL METHACRYLATE AND HYDROXYPROPYL METHYLCELLULOSE VIA EMULSION POLYMERISATION TECHNIQUE

 

(Pengkopolimeran Metil Metakrilat dan Hidroksipropil Metilselulosa Melalui Teknik Pempolimeran Emulsi)

 

Noor Aniza Harun1,2*, Liew Pei Chen1, Anis Arina Zainudin1, Tan Yea Tzy1, Farhanini Yusoff1

 

1Faculty of Science and Marine Environment,

2Advanced Nano Materials (ANOMA) Research Group, Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  nooraniza@umt.edu.my

 

 

Received: 22 September 2020; Accepted: 29 November 2020; Published:  20 February 2021

 

 

Abstract

Copolymerisation between methyl methacrylate (MMA) and hydroxypropyl methylcellulose (HPMC) to produce poly(methyl methacrylate-co-hydroxypropyl methylcellulose) P(MMA-co-HPMC) nanoparticles was successfully prepared via an emulsion polymerisation technique. The effects of different molar ratios of MMA and HPMC monomers towards the copolymer formation, morphology, thermal stability and solubility were thoroughly discussed. Homopolymerisation of poly(methyl methacrylate) (P(MMA)) and poly(hydroxylpropyl methylcellulose) (P(HPMC)) was also carried out as control via emulsion polymerisation. Sodium dodecyl sulphate (SDS) and potassium persulfate (KPS) were used as anionic surfactant and water-soluble initiator, respectively, throughout the emulsion polymerisation process. The formation of copolymer P(MMA-co-HPMC) and homopolymers of P(MMA) and P(HPMC) nanoparticles was confirmed by Fourier transform infrared spectroscopy (FTIR). The morphology of copolymer and homopolymer nanoparticles was determined using scanning electron microscopy (SEM). The decomposition rate of homopolymer and copolymer nanoparticles was verified using thermogravimetric analysis (TGA) technique. Meanwhile, the hydrophilicity of homopolymer and copolymer nanoparticles was determined by a simple solubility test to obtain their degree of solubility in aqueous medium. It was found that the copolymers formed with higher molar ratios of MMA monomers were less thermally stable and possessed lower rates of solubility than that of the higher molar ratios of HPMC monomers.

 

Keywords:   methyl methacrylate, hydroxypropyl methylcellulose, copolymerization, emulsion polymerization, hydrophilic nanoparticles

 

Abstrak

Pengkopolimeran di antara metil metakrilat (MMA) dan hidroksilpropil metilselulosa (HPMC) untuk menghasilkan nanopartikel poli(metil metakrilat-ko-hidroksilpropil metilselulosa) (P(MMA-ko-HPMC)) berjaya disediakan melalui teknik pempolimeran emulsi. Kesan nisbah molar yang berlainan daripada monomer MMA dan HPMC terhadap pembentukan kopolimer, morfologi, kestabilan haba dan kelarutan telah dibincangkan dengan jelas. Penghomopolimeran poli(metil metakrilat) (P(MMA)) dan poli(hidroksilpropil metilselulosa) (P(HPMC)) juga dijalankan sebagai kawalan melalui pempolimeran emulsi. Sodium dodesil sulfat dan kalium persulfat digunakan sebagai surfaktan anionik dan agen pemula di sepanjang tindak balas pempolimeran emulsi. Pembentukan nanopartikel kopolimer P(MMA-ko-HPMC) dan homopolimer P(MMA) dan P(HPMC) telah disahkan oleh puncak penyerapan spektroskopi infra-merah Fourier (FTIR). Morfologi nanopartikel kopolimer dan homopolimer ditentukan dengan menggunakan mikroskopi pengimbasan elektron (SEM). Kadar penguraian nanopartikel homopolimer dan kopolimer ditentukan dengan menggunakan teknik termogravimetrik (TGA). Manakala keterlarutan homopolimer dan kopolimer nanopartikel ditentukan oleh ujian kelarutan mudah bagi menentukan tahap keterlarutan di dalam medium akues. Ianya didapati bahawa kopolimer yang terbentuk dengan nisbah molar monomer MMA yang lebih tinggi mempunyai kestabilan haba yang lebih rendah dan mempunyai kadar kelarutan yang lebih rendah daripada nisbah molar monomer HPMC yang tinggi.

 

Kata kunci:   metil metakrilat, hidroksilpropil metilselulosa, pengkopolimeran, pempolimeran emulsi, nanopartikel hidrofilik

 

References

1.      Nagavarma, B. V. N., Hemant, K. S. Y., Ayaz, A., Vasudha, L. S. and Shivakumar, H. G. (2012). Different technique for preparation of polymeric nanoparticles – a review. Asian Journal of Pharmaceutical and Clinical Research, 5(3): 16-23.

2.      Kumari, A., Yadav, S. K. and Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery system. Colloids and Surfaces B: Biointerfaces, 75(1): 1-18.

3.      Liang, Y., Yun, W., Maozhi, P., Garry, L. R. and Qinmin, P. (2013). Synthesis of poly(methyl methacrylate) nanoparticles via differential microemulsion polymerization. European Polymer Journal, 49(1): 41-48.

4.      Dusadee, T., Garry, L. R. and Pattarapan, P. (2017). Preparation of poly(methyl methacrylate)-silica nanoparticles via differential microemulsion polymerization and physical properties of NR/PMMA-SiO2 hybrid membranes. Polymer Engineering & Science, 58(5): 759-766.

5.      Ismail, Z. and Harun, N. A. (2019). Synthesis and characterizations of hydrophilic PHEMA nanoparticles via inverse miniemulsion polymerization. Sains Malaysiana, 48(8): 1753-1759.

6.      Kamaruddin, N. N., Kassim, S. and Harun, N. A. (2017). Volume effect of non-polar solvent towards the synthesis of hydrophilic polymer nanoparticles prepares via inverse miniemulsion polymerization. AIP Conference Proceedings, 1885: 020056.

7.      Harun, N. A., Md Tahier, N., Kamaruddin, N. N., Mamat, M. and Kassim, S. (2018). Emulsion polymerization of poly(methacrylic acid) nanoparticles: Effects of different cationic surfactants. Asian Journal of Chemistry, 30 (10): 2299-2304.

8.      Harun, N. A., Tzy, T. Y., Chen, L. P. Zainuddin, A. A. and Kassim, S. (2019). Copolymerization of methacrylic acid (MAA) and butyl acrylate (BuA) via emulsion polymerization technique. Malaysian Journal of Chemistry, 21(3): 20-28

9.      Nopparat, V. and Panya, S. (2020). Synthesis of crosslinked poly(methacrylic acid) shell/ lipid core colloidal nanoparticles via L-in-Lm interfacial polymerization and their pH responsiveness. Colloids and Surfaces A; Physicochemical and Engineering Aspects, 603: 125180.

10.   Rao, J. P. and Geckeler, K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36(7): 887-913.

11.   José, M. A. (2004). Emulsion polymerization: From fundamental mechanisms to process developments. Journal of Polymer Science Part A: Polymer Chemistry 42(5): 1025-1042.

12.   Thickett, S. C. and Gilbert, R. G. (2007) Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer, 48(24): 6965-6991.

13.   Shalviri, A., Raval, G., Prasad, P., Chan, C., Liu, Q., Herrklotz, H., Rauth, A. M. and Wu, X. Y. (2012). pH-dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multidrug resistance in human breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 82(3): 587-597.

14.   Baek, H. H., Lee, J. M., Cho, J. E., Kim, J. H. and Cheong, I. W. (2010). Hydroxypropyl methylcellulose-graft-poly(ethyl acrylate-co-methyl methacrylate) particles by resin emulsion polymerization. Macromolecule Research, 18(1): 53-58.

15.   Mondal, S., Gupta, B. and Sing, H. (2005). Acrylic monomers based emulsion copolymer for coating application. Indian Journal of Fibre and Textile Research, 30: 184-189.

16.   Joshi,J. R. and Patel, R. P. (2012). Role of biodegradable polymers in drug delivery.  International Journal of Current Pharmaceutical Research, 4(4): 74.

17.   Tian, H. Y., Tang, Z. H., Zhuang, X. L., Chen, X. S. and Jing, X. B. (2012). Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Progress in Polymer Science, 37(2): 237-280.

18.   Lu, T., Liu, X. Y., Qi, D. M. and Zhao, H. T. (2015). Effect of hydrophobic monomer on the aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic monomer. Iranian Polymer Journal, 24(3): 219-227.

19.   Wu, B., Lenz, R. W. and Hazer, B. (1999). Polymerization of methyl methacrylate and its copolymerization with ε-caprolactone catalyzed by isobutylalumoxane catalyst. Macromolecules, 32(20): 6856-6859.

20.   Miranda, A., Mill, M. and Caraballo, I. (2006). Study of the critical points of HPMC hydrophilic matrices for controlled drug delivery.  International Journal of Pharmaceutics, 311(1-2): 75-81.

21.   Ding, C. C., Li, G. Y. and Zhang, M. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymer, 119: 194-201.

22.   Wayne, N. A., Stephen, P. D. and Samual, L. E. (2014). Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 32(100): 76-88.

23.   Fatimah, A., Amir, H. N. and Francesco, P. (2019). Material encapsulation in poly(methyl methacrylate) shell: A review. Journal of Applied Polymer, 136(41): 48039.

24.   Wu, H. C., Du, S. Y., Lu, Y., Li, Y. and Wang, D. (2014). The application of biomedical polymer material hydroxy propyl methyl cellulose (HPMC) in pharmaceutical preparations. Journal of Chemical and Pharmaceutical Research, 6(5): 155-160.