Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 757 - 765
EQUIVALENT CIRCUIT ANALYSIS OF LaZrTa3O11
CERAMIC SYNTHESISED BY USING THE CONVENTIONAL SOLID-STATE METHOD
(Analisis Litar Sepadan Seramik LaZrTa3O11
Disintesis dengan Menggunakan Kaedah Keadaan Pepejal Konvensional)
Fadhlina
Che Ros* and Jumiah Hassan
Physics Department, Centre for Defence
Foundation Studies,
Universiti Pertahanan Nasional Malaysia, Kem
Sungai Besi 57000, Kuala Lumpur, Malaysia
*Corresponding
author: fadhlina@upnm.edu.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published:
12 October 2020
Abstract
LaZrTa3O11
ceramic with α-U3O8-type
structure has been prepared by
using the conventional
solid state-route and studied by
using powder X-ray
diffraction for phase analysis and impedance spectroscopy for electrical measurements. It has hexagonal unit cell
with space group P6322 at
room temperature. LaZrTa3O11 is reported to be isostructural
with CaTa4O11 and Ag2Nb4O11;
the structure is related to U3O8-structure, where it consists of single layers of edge-sharing
pentagonal Ta-O bipyramids alternating with layers of edge-sharing octahedra.
The impedance spectroscopy response showed that LaZrTa3O11 exhibited a typical insulating behaviour at room temperature,
with permittivity, ε ~ 19. It was a highly
resistive material with R >> 109
Ω at temperature below 500o C and as the temperature increased, frequency-dependence of alternating
current conductivities at high
frequency was clearly visible. The electrical properties of LaZrTa3O11
is best modelled by using non-Debye
response circuit that consists of a parallel combination of a resistor,
capacitor, and a constant phase
element.
Keywords: LaZrTa3O11, dielectrics,
high-temperature ceramics, lanthanide-oxide, non-Debye circuit
Abstrak
Seramik LaZrTa3O11
dengan struktur jenis α-U3O8 telah disediakan
melalui kaedah keadaan pepejal konvensional dan dikaji dengan menggunakan
pembelauan sinar-X untuk analisis fasa dan spektroskopi impedans untuk kajian
sifat keelektrikan. Ia mempunyai sel unit heksagonal dengan kumpulan ruang P6322 pada suhu bilik. LaZrTa3O11
dilaporkan mempunyai sama struktur dengan CaTa4O11 dan Ag2Nb4O11;
struktur tersebut adalah berkait dengan struktur U3O8 di
mana ia terdiri daripada satu lapisan pentagonal bypiramid Ta-O berkongsi-sisi,
berselang-seli dengan lapisan-lapisan oktahedra yang berkongsi-sisi. Tindak-balas
spektroskopi impedans menunjukkan bahawa seramik LaZrTa3O11
mempamerkan sifat penebat yang tipikal pada suhu bilik, dengan kebolehtelapan, ε ~ 19. Ia adalah bahan
berkerintangan tinggi dengan R >> 109 Ω pada suhu di
bawah 500o C dan apabila suhu meningkat, kebergantungan frekuensi
konduktiviti arus ulang alik pada frekuensi tinggi jelas kelihatan. Model
terbaik sifat keelektrikan bagi seramik LaZrTa3O11 adalah
menggunakan litar non-Debye yang terdiri daripada kombinasi selari perintang,
kapasitor dan elemen fasa pemalar.
Kata kunci: LaZrTa3O11, dielektrik, seramik bersuhu tinggi,
oksida lanthanid, litar non-Debye
References
1. Masó,
N., Woodward, D. I., Thomas, P. A., Várez, A. and West, A. R. (2011).
Structural characterisation of ferroelectric Ag2Nb4O11
and dielectric Ag2Ta4O11. Journal of Materials Chemistry, 21: 2715-2722.
2. Grins,
J. and Nygren, M. (1992). Structure of LaZrTa3O11, a CaTa4O11
isotype. Materials Research Bulletin,
27: 141-145.
3. Masó,
N., Woodward, D. I., Thomas, P. A., Várez, A. and West, A. R. (2011).
Polymorphism, structural characterisation and electrical properties of Na2Nb4O11. Journal of Materials Chemistry, 21:
12096-12102.
4. Fadhlina
Che Ros, Mclaren, N. R., Masó, N. and West, A. R. (2018). Synthesis, structure
and dielectric properties of a new family of phases, ABC3O11:
A = La, Pr, Nd, Sm, Gd; B = Zr, Hf; C = Ta, Nb. Journal of Australian Ceramic Society, 54: 1-10.
5. Jahnberg,
L. (1970). Crystal structures of Na2Nb4O11 and
CaTa4O11. Journal
of Solid State Chemistry, 1: 454-462.
6. Zheng,
C. and West, A. R. (1991). Compound and solid-solution formation, phase
equilibria and electrical properties in the ceramic system ZrO2-La2O3-Ta2O5.
Journal of Materials Chemistry, 1(2):
163-167.
7. Moulson,
A. J. and Herbert, J. M. (2008) Electroceramics. John Wiley & Sons: pp.
285.
8. Joncher,
A. K. (1983). Dielectric relaxation in solids. chelsea dielectric press.
London: pp. 209.
9. Scarel,
G., Svane, A. and Fanciulli, M., (2007). Scientific and technological issue
related to rare–earth oxides: An introduction.
Journal of Applied Physics,
106: 1-14.