Malaysian
Journal of Analytical Sciences Vol 24 No 5
(2020): 744 - 756
CARBOXYMETHYL CHITOSAN-BASED BIOPOLYMER ELECTROLYTE WITH IMIDAZOLIUM
IONIC LIQUID
(Elektrolit
Biopolimer Berasaskan Karboksimetil Kitosan Dengan Cecair Ionik Imidazolium)
Intan Juliana Shamsudin1*, Norsyabila Shrgawi1,
Hussein Hanibah2, Nur Hasyareeda Hassan3, Azizan Ahmad3
1 Chemistry & Biology
Department, Centre for Defence Foundation Studies,
National
Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia
2 Centre of Foundation Studies,
Universiti
Teknologi MARA, Selangor Branch, Dengkil
Campus, 43800 Dengkil, Selangor Darul Ehsan, Malaysia
3 School
of Chemical Sciences and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
*
Corresponding author: intanjuliana@upnm.edu.my
Received: 13 November 2019;
Accepted: 3 September 2020; Published: 12 October 2020
Abstract
Solid biopolymer electrolyte based on carboxymethyl
chitosan has been successfully prepared with ionic liquid
1-butyl-3-methylimidazolium acetate, [Bmim][OAc] as the charge carrier. The
strong interactions of the ionic liquid with the biopolymer host were detected
by several changes in the FTIR spectra. The decreased percentage of the
crystallinity index derived from the XRD diffractograms suggested the amorphous
nature of the film prepared. SEM observations showed formation of the linkages
due to the plasticising effect of [Bmim][OAc]. Higher amount of [Bmim][OAc] led
to the enhancement in the ionic conductivity, σ. The highest σ
achieved was (3.05 ± 0.35) x 10-3 S cm-1 measured at
ambient temperature. The highest conducting electrolyte achieved high
electrochemical stability up to ±2.8 V measured by linear sweep voltammetry
(LSV). Transference number measurement confirmed that ions were the major
contributor in the conduction of electrolyte with ±0.980 ion transference
number.
Keywords: carboxymethyl chitosan, ionic
liquid, imidazolium, biopolymer electrolytes, ionic conductivity
Abstrak
Elektrolit
biopolimer pepejal berasaskan karboksimetil kitosan telah berjaya disediakan
dengan cecair ionik 1-butil-3-metillimidazolium asetat, [Bmim][OAc] sebagai
pembawa cas. Interaksi yang kuat di antara cecair ionik dengan perumah
biopolimer dikesan oleh beberapa perubahan dalam spektrum FTIR. Peratusan
penurunan indeks penghabluran yang diperolehi daripada difraktogram XRD
mencadangkan sifat amorfus filem yang disediakan. Pemerhatian SEM menunjukkan
pembentukan jaringan kerana kesan pemplastikan [Bmim][OAc]. Lebih banyak jumlah
[Bmim][OAc] membawa kepada peningkatan dalam kekonduksian ionik, σ. Kadar
tertinggi σ dicapai (3.05 ± 0.35) x 10-3 S cm-1 yang
diukur pada suhu ambien. Elektrolit berkonduksian tertinggi mencapai kestabilan
elektrokimia yang tinggi sehingga ± 2.8 V diukur dengan voltammetri sapuan
linear (LSV). Pengukuran nombor pemindahan mengesahkan bahawa ion adalah
penyumbang utama dalam pengaliran elektrolit dengan nombor pemindahan ion
sebanyak ± 0.980.
Kata kunci: karboksimetil kitosan, cecair
ionik, imidazolium, elektrolit biopolimer, konduktiviti ionik
References
1. Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M. and Zhang, X. F. (2002).
Properties and biocompatibility of chitosan films modified by blending with
PEG. Biomaterials, 23(13):
2641-2648.
2. Sun, G. Z., Chen, X. G., Li, Y. Y.,
Zheng, B., Gong, Z. H., Sun, J. J., and Lin, W. X. (2008). Preparation of
H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for
residual oil in aqueous system. Frontiers of Materials Science in China, 2(1): 105-112.
3. Ge, H. C., and Luo, D. K. (2005).
Preparation of carboxymethyl chitosan in aqueous solution under microwave
irradiation. Carbohydrate Research, 340(7): 1351-1356.
4. Mobarak, N. N., Ramli, N., Abdullah,
M. P. and Ahmad, A. (2013). Spectroscopic studies of carboxymethyl
chitosan-ammonium triflate (NH4CF3SO3) based
solid polymer electrolytes. AIP Conference Proceedings, 1571(1): 843-849.
5. Mallakpour, S. and Dinari, M.
(2012). Ionic liquids as green solvents: progress and prospects. In Green Solvents II, Springer,
Dordrecht: pp. 1-3.
6. Cláudio, A. F. M., Swift, L.,
Hallett, J. P., Welton, T., Coutinho, J. A. and Freire, M. G. (2014). Extended
scale for the hydrogen-bond basicity of ionic liquids. Physical
Chemistry Chemical Physics, 16(14):
6593-6601.
7. Shamsudin, I. J., Ahmad, A., Hassan,
N. H. and Kaddami, H. (2015). Bifunctional ionic liquid in conductive
biopolymer based on chitosan for electrochemical devices application. Solid
State Ionics, 278: 11-19.
8. Leones, R., Sentanin, F., Rodrigues,
L. C., Marrucho, I. M., Esperança, J. M. S. S., Pawlicka, A. and Silva, M. M.
(2012). Investigation of polymer electrolytes based on agar and ionic
liquids. Express Polymer Letters, 6(12): 1007-1016.
9. Rueda, D. R., Secall, T. and Bayer,
R. K. (1999). Differences in the interaction of water with starch and chitosan
films as revealed by infrared spectroscopy and differential scanning
calorimetry. Carbohydrate polymers, 40(1), 49-56.
10. Stefanescu, C., Daly, W. H. and
Negulescu, I. I. (2012). Biocomposite films prepared from ionic liquid
solutions of chitosan and cellulose. Carbohydrate Polymers, 87(1): 435-443.
11. Chen, X. G, and Park, H. J. (2003).
Chemical characteristics of O-carboxymethyl chitosans related to the
preparation conditions. Carbohydrate Polymers, 53(4): 355-359.
12. Mourya, V. K., Inamdar, N. N. and
Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced
Materials Letters, 1(1):
11-33.
13. Shamsudin, I. J., Ahmad, A., Hassan,
N. H. and Kaddami, H. (2016). Biopolymer electrolytes based on carboxymethyl
ҡ-carrageenan and imidazolium ionic liquid. Ionics, 22(6): 841-851.
14. Lu, G., Kong, L., Sheng, B., Wang,
G., Gong, Y. and Zhang, X. (2007). Degradation of covalently cross-linked
carboxymethyl chitosan and its potential application for peripheral nerve
regeneration. European Polymer Journal, 43(9): 3807-3818.
15. Mobarak, N. N., Ahmad, A., Abdullah,
M. P., Ramli, N. and Rahman, M. Y. A. (2013). Conductivity enhancement via
chemical modification of chitosan based green polymer electrolyte. Electrochimica
Acta, 92: 161-167.
16. Ju, X., Bowden, M., Brown, E. E. and
Zhang, X. (2015). An improved X-ray diffraction method for cellulose
crystallinity measurement. Carbohydrate polymers, 123: 476-481.
17. Ioelovich, M. (2014). Crystallinity
and hydrophility of chitin and chitosan. Journal of Chemistry, 3(3): 7-14.
18. Domene-López, D., Delgado-Marín, J.
J., García-Quesada, J. C., Martín-Gullón, I. and Montalbán, M. G. (2020).
Electroconductive starch/multi-walled carbon nanotube films plasticized by
1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers, 229: 115545.
19. Ismail, S., Mansor, N., Majeed, Z.
and Man, Z. (2016). Effect of water and [Emim][OAc] as plasticizer on
gelatinization of starch. Procedia Engineering, 148: 524-529.
20. Ismail, S., Mansor, N. and Man, Z.
(2017). A study on thermal behaviour of thermoplastic starch plasticized by
[Emim] Ac and by [Emim] Cl. Procedia Engineering, 184: 567-572.
21. Shukur, M. F. and Kadir, M. F. Z.
(2015). Hydrogen ion conducting starch-chitosan blend based electrolyte for
application in electrochemical devices. Electrochimica Acta, 158: 152-165.
22. Su’ait, M. S., Ahmad, A., Hamzah, H.
and Rahman, M. Y. A. (2011). Effect of lithium salt concentrations on blended
49% poly (methyl methacrylate) grafted natural rubber and poly (methyl
methacrylate) based solid polymer electrolyte. Electrochimica Acta, 57: 123-131.
23. Liew, C. W. and Ramesh, S. (2013).
Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with
high ionic transport number. Cellulose, 20(6): 3227-3237.
24. Yap, Y. L., You, A. H., Teo, L. L.
and Hanapei, H. (2013). Inorganic filler sizes effect on ionic conductivity in
polyethylene oxide (PEO) composite polymer electrolyte. International Journal
of Electrochemical Sciences, 8:
2154-2163.
25. Bai, J., Lu, H., Cao, Y., Li, X. and
Wang, J. (2017). A novel ionic liquid polymer electrolyte for quasi-solid state
lithium air batteries. RSC advances, 7(49): 30603-30609.
26. Deraman, S. K., Mohamed, N. S. and
Subban, R. H. Y. (2013). Conductivity and electrochemical studies on polymer
electrolytes based on poly vinyl (chloride)-ammonium triflate-ionic liquid for
proton battery. International Journal of Electrochemical Science, 8(1): 1459-68.