Malaysian Journal of Analytical Sciences Vol 24 No 5 (2020): 744 - 756

 

 

 

 

CARBOXYMETHYL CHITOSAN-BASED BIOPOLYMER ELECTROLYTE WITH IMIDAZOLIUM IONIC LIQUID

 

(Elektrolit Biopolimer Berasaskan Karboksimetil Kitosan Dengan Cecair Ionik Imidazolium)

 

Intan Juliana Shamsudin1*, Norsyabila Shrgawi1, Hussein Hanibah2, Nur Hasyareeda Hassan3, Azizan Ahmad3

 

1 Chemistry & Biology Department, Centre for Defence Foundation Studies,

National Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia
2 Centre of Foundation Studies,

Universiti Teknologi MARA,  Selangor Branch, Dengkil Campus, 43800 Dengkil, Selangor Darul Ehsan, Malaysia
3
School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia

 

* Corresponding author:  intanjuliana@upnm.edu.my

 

 

Received: 13 November 2019; Accepted: 3 September 2020; Published:  12 October 2020

 

 

Abstract

Solid biopolymer electrolyte based on carboxymethyl chitosan has been successfully prepared with ionic liquid 1-butyl-3-methylimidazolium acetate, [Bmim][OAc] as the charge carrier. The strong interactions of the ionic liquid with the biopolymer host were detected by several changes in the FTIR spectra. The decreased percentage of the crystallinity index derived from the XRD diffractograms suggested the amorphous nature of the film prepared. SEM observations showed formation of the linkages due to the plasticising effect of [Bmim][OAc]. Higher amount of [Bmim][OAc] led to the enhancement in the ionic conductivity, σ. The highest σ achieved was (3.05 ± 0.35) x 10-3 S cm-1 measured at ambient temperature. The highest conducting electrolyte achieved high electrochemical stability up to ±2.8 V measured by linear sweep voltammetry (LSV). Transference number measurement confirmed that ions were the major contributor in the conduction of electrolyte with ±0.980 ion transference number.

 

Keywords:  carboxymethyl chitosan, ionic liquid, imidazolium, biopolymer electrolytes, ionic conductivity

 

Abstrak

Elektrolit biopolimer pepejal berasaskan karboksimetil kitosan telah berjaya disediakan dengan cecair ionik 1-butil-3-metillimidazolium asetat, [Bmim][OAc] sebagai pembawa cas. Interaksi yang kuat di antara cecair ionik dengan perumah biopolimer dikesan oleh beberapa perubahan dalam spektrum FTIR. Peratusan penurunan indeks penghabluran yang diperolehi daripada difraktogram XRD mencadangkan sifat amorfus filem yang disediakan. Pemerhatian SEM menunjukkan pembentukan jaringan kerana kesan pemplastikan [Bmim][OAc]. Lebih banyak jumlah [Bmim][OAc] membawa kepada peningkatan dalam kekonduksian ionik, σ. Kadar tertinggi σ dicapai (3.05 ± 0.35) x 10-3 S cm-1 yang diukur pada suhu ambien. Elektrolit berkonduksian tertinggi mencapai kestabilan elektrokimia yang tinggi sehingga ± 2.8 V diukur dengan voltammetri sapuan linear (LSV). Pengukuran nombor pemindahan mengesahkan bahawa ion adalah penyumbang utama dalam pengaliran elektrolit dengan nombor pemindahan ion sebanyak ± 0.980.

 

Kata kunci:  karboksimetil kitosan, cecair ionik, imidazolium, elektrolit biopolimer, konduktiviti ionik

 

References

1.      Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M. and Zhang, X. F. (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials23(13): 2641-2648.

2.      Sun, G. Z., Chen, X. G., Li, Y. Y., Zheng, B., Gong, Z. H., Sun, J. J., and Lin, W. X. (2008). Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for residual oil in aqueous system. Frontiers of Materials Science in China2(1): 105-112.

3.      Ge, H. C., and Luo, D. K. (2005). Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydrate Research340(7): 1351-1356.

4.      Mobarak, N. N., Ramli, N., Abdullah, M. P. and Ahmad, A. (2013). Spectroscopic studies of carboxymethyl chitosan-ammonium triflate (NH4CF3SO3) based solid polymer electrolytes. AIP Conference Proceedings,  1571(1): 843-849.

5.      Mallakpour, S. and Dinari, M. (2012). Ionic liquids as green solvents: progress and prospects. In Green Solvents II, Springer, Dordrecht: pp. 1-3.

6.      Cláudio, A. F. M., Swift, L., Hallett, J. P., Welton, T., Coutinho, J. A. and Freire, M. G. (2014). Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics16(14): 6593-6601.

7.      Shamsudin, I. J., Ahmad, A., Hassan, N. H. and Kaddami, H. (2015). Bifunctional ionic liquid in conductive biopolymer based on chitosan for electrochemical devices application. Solid State Ionics, 278: 11-19.

8.      Leones, R., Sentanin, F., Rodrigues, L. C., Marrucho, I. M., Esperança, J. M. S. S., Pawlicka, A. and Silva, M. M. (2012). Investigation of polymer electrolytes based on agar and ionic liquids. Express Polymer Letters6(12): 1007-1016.

9.      Rueda, D. R., Secall, T. and Bayer, R. K. (1999). Differences in the interaction of water with starch and chitosan films as revealed by infrared spectroscopy and differential scanning calorimetry. Carbohydrate polymers40(1), 49-56.

10.   Stefanescu, C., Daly, W. H. and Negulescu, I. I. (2012). Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydrate Polymers87(1): 435-443.

11.   Chen, X. G, and Park, H. J. (2003). Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers53(4): 355-359.

12.   Mourya, V. K., Inamdar, N. N. and Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters1(1): 11-33.

13.   Shamsudin, I. J., Ahmad, A., Hassan, N. H. and Kaddami, H. (2016). Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid. Ionics22(6): 841-851.

14.   Lu, G., Kong, L., Sheng, B., Wang, G., Gong, Y. and Zhang, X. (2007). Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. European Polymer Journal43(9): 3807-3818.

15.   Mobarak, N. N., Ahmad, A., Abdullah, M. P., Ramli, N. and Rahman, M. Y. A. (2013). Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochimica Acta92: 161-167.

16.   Ju, X., Bowden, M., Brown, E. E. and Zhang, X. (2015). An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate polymers123: 476-481.

17.   Ioelovich, M. (2014). Crystallinity and hydrophility of chitin and chitosan. Journal of Chemistry, 3(3): 7-14.

18.   Domene-López, D., Delgado-Marín, J. J., García-Quesada, J. C., Martín-Gullón, I. and Montalbán, M. G. (2020). Electroconductive starch/multi-walled carbon nanotube films plasticized by 1-ethyl-3-methylimidazolium acetate. Carbohydrate Polymers229: 115545.

19.   Ismail, S., Mansor, N., Majeed, Z. and Man, Z. (2016). Effect of water and [Emim][OAc] as plasticizer on gelatinization of starch. Procedia Engineering148: 524-529.

20.   Ismail, S., Mansor, N. and Man, Z. (2017). A study on thermal behaviour of thermoplastic starch plasticized by [Emim] Ac and by [Emim] Cl. Procedia Engineering184: 567-572.

21.   Shukur, M. F. and Kadir, M. F. Z. (2015). Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochimica Acta158: 152-165.

22.   Su’ait, M. S., Ahmad, A., Hamzah, H. and Rahman, M. Y. A. (2011). Effect of lithium salt concentrations on blended 49% poly (methyl methacrylate) grafted natural rubber and poly (methyl methacrylate) based solid polymer electrolyte. Electrochimica Acta57: 123-131.

23.   Liew, C. W. and Ramesh, S. (2013). Studies on ionic liquid-based corn starch biopolymer electrolytes coupling with high ionic transport number. Cellulose20(6): 3227-3237.

24.   Yap, Y. L., You, A. H., Teo, L. L. and Hanapei, H. (2013). Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. International Journal of Electrochemical Sciences8: 2154-2163.

25.   Bai, J., Lu, H., Cao, Y., Li, X. and Wang, J. (2017). A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries. RSC advances7(49): 30603-30609.

26.   Deraman, S. K., Mohamed, N. S. and Subban, R. H. Y. (2013). Conductivity and electrochemical studies on polymer electrolytes based on poly vinyl (chloride)-ammonium triflate-ionic liquid for proton battery. International Journal of Electrochemical Science8(1): 1459-68.