Malaysian
Journal of Analytical Sciences Vol 24 No 2 (2020): 227 - 235
ELECTROBIOSYNTESIS OF NiO USING RAMBUTAN
LEAVES FOR PHOTODEGRADATION OF REMAZOL BRILLIANT BLUE DYE
(Elektrobiosintesis
NiO Menggunakan Ekstrak Daun Rambutan Untuk Fotodegradasi Pewarna Remazol Brilliant Biru)
Muhammad Farhan Hanafi, Noor Faizah
Che Harun, Norzahir Sapawe*, Azizzami Raidin
Universiti Kuala Lumpur Branch
Campus
Malaysian Institute of Chemical
and Bioengineering Technology,
Lot 1988 Vendor City, Taboh
Naning, 78000 Alor Gajah, Melaka, Malaysia
*Corresponding author:
norzahir@unikl.edu.my
Received: 28 April 2019;
Accepted: 16 February 2020
Abstract
NiO catalyst was prepared through
electrochemical method with rambutan (Nephelium lappaceum) leaves as an
electrolyte. The effects of the preparation methods on the physical properties
of the catalyst were studied via
Fourier transform infrared spectroscopy (FTIR). The interaction between nickel
species and bio-active compounds of rambutan leaves crude during the
electrochemical was found to affect the NiO structure. An amount of 3.0 g L−1
of NiO was found to be the optimum dosage for 10 mg L−1
of Remazol Brilliant Blue (RBB) dye, which resulted in 83.7% of maximum
degradation after 1 hour of contact time at pH 3 under fluorescent light. This
study showed that the kinetics followed a pseudo-first order
Langmuir–Hinshelwood model with the calculated values of Kr and KLH
at 1.38 mg L−1 h−1 and 0.03 L mg−1,
respectively. Measurements of the mineralization of RBB by COD and BOD5
analysis were 66.6% and 73.4%, respectively, before and after reaction.
Therefore, the effectiveness of synthesized NiO by the electrobiosynthesis
method was established and confirmed through this study. The synthesized NiO
has a great potential as a photocatalyst in photocatalytic reaction for
wastewater treatment.
Keywords: electrobiosynthesis, nickel, remazol brilliant
blue dye, degradation, light irradiation
Abstrak
Mangkin NiO disediakan melalui
kaedah elektrokimia dengan ekstrak daun rambutan (Nephelium lappaceum) sebagai elektrolit. Kesan kaedah penyediaan ke
atas sifat fizikal mangkin telah dikaji melalui spektroskopi inframerah
transformasi Fourier
(FTIR). Interaksi antara spesies nikel dan sebatian bio-aktif
dari ekstrak daun rambutan semasa elektrokimia didapati mempengaruhi struktur
NiO. Sejumlah 3.0 gL-1 NiO didapati sebagai dos optimum untuk 10 mgL-1
pewarna Remazol Brilliant Biru (RBB), yang menghasilkan 83.7% degradasi
maksimum selepas 1 jam masa kontak di pH 3 di bawah lampu pendarfluor. Kajian
ini juga menunjukkan bahawa kinetik mengikuti model Langmuir-Hinshelwood dengan
pseudo pertama dengan nilai kiraan Kr dan KLH
masing-masing adalah 1.38 mgL-1h-1 dan 0.03 Lmg-1.
Pengukuran mineralisasi RBB oleh COD dan BOD5 adalah 66.6% dan 73.4%,
sebelum dan selepas tindak balas. Oleh itu, keberkesanan sintesis NiO dengan
kaedah elektrobiosintesis telah ditubuhkan dan disahkan melalui kajian ini. NiO
yang disintesis mempunyai potensi besar sebagai fotokatalis dalam tindak balas
fotokatalitik untuk rawatan air sisa.
Kata kunci: elektrobiosintesis, nikel, pewarna remazol brilliant
biru, degradasi, penyinaran cahaya
References
1.
Li, X. K., Ji, W. J., Zhao, J., Wang, S.
J. and Au, C. T. (2005). Ammonia decomposition over Ru and Ni catalysts
supported on fumed SiO2, MCM-41 and SBA-15. Journal of Catalysis,
236(2): 181-189.
2.
Singh, A., Kumar, V. and Srivastava, J. N.
(2013). Assessment of bioremediation of oil and phenol contents in refinery
wastewater via bacterial consortium. Journal Petroleum Environment
Biotechnology, 4: 145-151.
3.
Sapawe, N.,
Jalil, A. A., Triwahyono, S., Sah, R. N. R. A., Jusoh, N. W. C. and Hairom, N. H.
H. (2013). Electrochemical strategy for grown ZnO nanoparticles deposited onto
HY zeolite with enhanced photodecolorization of methylene blue: Effect of the
formation of Si-O-Zn bonds. Applied
Catalysis A: General, 456: 144-158.
4.
Sapawe, N.,
Jalil, A. A. and Triwahyono, S. (2013). One-pot electro-synthesis of ZrO2-ZnO/HY
nanocomposite for photocatalytic decolorization of various dye-contaminants. Chemical Engineering Journal, 225:
254-265.
5.
Venu, G. D. and Sahle, E. E. (2008).
Catalytic oxidation of dimethyl sulfide with ozone: effects of promoter and
physico-chemical properties of metal oxide catalysts. Applied Catalyst A: General,
348(1): 86-93.
6.
Bokare, A. D., Chikate, R. C., Rode, C. V.
and Paknikar, K. M. (2008). Iron-nickel
bimetallic nanopartilcles for reductive degradation of azo dye Orange G in
aqueous solution. Applied Catalysis B: Environmental, 79: 270-278.
7.
Petya, K., Naydenov, A., Christoskova,
S. and Mehandjiev, D. (2006). Alumina-supported nickel oxide for ozone
decomposition and catalytic ozonation of CO and VOCs. Journal of Chemical &
Engineering, 122: 41-46.
8.
Xinyu, Z., Li, X. and Qin, W. (2009).
Investigation of the catalytic activity for ozonation on the surface of NiO
nanoparticles. Chemical Physics Letter, 479(4): 310-315.
9.
Swami, A., Selvakannan, P. R., Pasricha,
R. and Sastry, M. (2004). One-step synthesis of ordered two-dimensional
assemblies of silver nanoparticles by the spontaneous reduction of silver ions
by pentadecylphenol Langmuir monolayers. The Journal of Physical Chemistry B,
108: 19269-19275.
10.
Sapawe, N., Jalil, A. A., Triwahyono,
S., Adam, S. H., Jaafar, N. F. and Satar, M. A. H. (2012). Isomorphous
substitution of Zr in the framework of aluminosilicate HY by an electrochemical
method: Evaluation by methylene blue degradation. Applied Catalysis B:
Environmental, 125: 311-323.
11.
Sapawe, N., Rustam, M. A., Mahadzir, M. H.
H., Lani, M. K. E. M., Raidin, A. and Hanafi, M. F. (2019). A novel approach of in-situ
electrobiosynthesis of metal oxide nanoparticles using crude plant extract as
main medium for supporting electrolyte. Materials
Today: Proceedings, 19(4): 1441-1445.
12.
Hanafi, M. F., Sapawe,
N., Rahim, M. Z. A., Rahman, N. N., Rahman, A. H. A. and Ahmad, A. A. (2016). Performance
of EGZrO2-EGFe2O3/HY as photocatalyst and its
efficacy in decolorization of dye-contaminants. Malaysian
Journal of Analytical Sciences, 20(5), 1052-1058.
13.
Hanafi, M. F. and Sapawe,
N. (2018). Remarkable degradation of methyl orange by tetragonal zirconia
catalyst. Materials Today: Proceedings, 5(10), 21849-21852.
14.
Hanafi, M.F. and Sapawe,
N. (2019). The potential of ZrO2 catalyst toward degradation of dyes
and phenolic compound. Materials Today:
Proceedings, 19(4): 1524-1528.
15.
Hanafi, M. F. and Sapawe,
N. (2019). Electrosynthesis of ZrO2 nanoparticles with enhanced
removal of phenolic compound. Materials
Today: Proceedings, 19(4):
1529-1532.
16.
Hanafi, M. F. and Sapawe,
N. (2019). Effect of calcination temperature on the structure and catalytic
performance of ZrO2 catalyst in phenol degradation. Materials Today: Proceedings, 19(4): 1533-1536.
17.
Hanafi, M. F. and Sapawe,
N. (2019). Electrogenerated zirconia
(EGZrO2) nanoparticles as recyclable catalyst for effective
photocatalytic degradation of phenol.
Materials Today: Proceedings, 19(4): 1537-1540.
18.
Sapawe, N. and Hanafi,
M. F. (2015). Facile one-pot electrosynthesis of high photoreactive
hexacoordinated Si with Zr and Zn catalyst. RSC
Advances, 5(92):
75141-75144.
19.
Sapawe, N. (2015). Hybridization
of zirconia, zinc and iron supported on HY zeolite as a solar-based catalyst
for the rapid decolorization of various dyes. New Journal of Chemistry, 39(6): 4526-4533.
20.
Sapawe, N. (2015). Effective
solar-based iron oxide supported HY zeolite catalyst for the decolorization of
organic and simulated dyes. New Journal
of Chemistry, 39(8):
6377-6387.
21.
Rahdar, A., Aliahmad, M. and Azizi, Y.
(2015). NiO nanoparticles: Synthesis and characterization. Journal of
Nanostructures, 15: 145-151.
22.
Yuvakumar, R., Suresh, J., Joseph, A. N.,
Sundrarajan, M. and Hong, S. I. (2014). Rambutan (Nephelium lappaceum
L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Material
Letters, 128(1): 170-174.
23.
Algubili, A. M., Alrobayi, E. M. and Alkaim,
A. F. (2015). Photocatalytic degradation of remazol brilliant blue dye by ZnO/UV
process. International Journal Chemistry and Science, 13(2): 911-921.
24.
Das, D. P., Baliarsingh, N. and Parida,
K.M. (2007). Photocatalytic decolorisation of methylene blue (MB) over titania
pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar
radiation. Journal of Molecular Catalysis
A: Chemical, 261: 254-261.
25.
Sapawe, N., Jalil, A. A., Triwahyono,
S., Adam, S. H., Jaafar, N. F. and Satar, M. A. H. (2012). Isomorphous
substitution of Zr in the framework of aluminosilicate HY by an electrochemical
method: Evaluation by methylene blue degradation. Applied Catalysis B:
Environmental, 125: 311-323.