Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 1009 - 1017
DOI:
10.17576/mjas-2019-2306-09
PALEOPRODUCTIVITY VARIATION IN TERENGGANU
OFFSHORE DURING HOLOCENE BASED ON TOTAL ORGANIC CARBON AND CaCO3 RECORDS
(Variasi Paleoproduktiviti
di Luar Pesisir Pantai Terengganu Ketika Holosen Berdasarkan Rekod Jumlah
Karbon Organik dan CaCO3)
Erick Naim1, Hasrizal Shaari1,2*,
Mohd Fadzil Akhir1
1Institute of Oceanography and Environment
2Faculty of Science and Marine Environment
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
*Corresponding
author: riz@umt.edu.my
Received: 30 October 2018;
Accepted: 26 September 2019
Abstract
In this study, a sediment core (TER16-GC13C) length 180 cm was
sampled in the offshore area of Terengganu, southern South China Sea (SSCS)
with RV Discovery to establish the paleoproductivity records during the
Holocene. The concentrations of total organic carbon (TOC) and calcium
carbonate (CaCO3) were analyzed by using a Shimadzu TOC Analyzer.
The age model was established from carbon-14 data of the intact shells (Anadara sp., Mactra sp., Meiocardia
sp., Pecten sp.) found within the
sediment core. The time frame of the analyzed sediment core sample covered the
Northgrippian (~7840 cal yr BP). Average TOC value was 0.23±0.07% with a
decreasing trend towards Meghalayan. CaCO3 content ranged from 3.38%
to 12.05% with an average of 6.95±2.05% with an increasing trend towards
Meghalayan. We suggested that TOC and CaCO3 represent the organic
and carbonate-based organisms, respectively. This scenario suggested that a
change in community structure had occurred in the study site in which organic
(calcareous) organism population had remained low (increased) from
Northgrippian towards Meghalayan. This work is the first attempt in
reconstructing paleoproductivity records in Malaysian waters.
Keywords: paleoproductivity, total organic carbon,
calcium carbonate, Holocene, southern South China Sea
Abstrak
Dalam kajian ini, teras sedimen (TER16-GC13C)
sepanjang 180 cm telah disampel di kawasan luar pesisir pantai Terengganu,
selatan Laut China Selatan (SSCS) dengan RV Discovery untuk menyediakan
rekod-rekod paleoproduktiviti ketika Holosen. Kandungan jumlah karbon organik
(TOC) dan kalsium karbonat (CaCO3) telah dianalisa menggunakan
penganalisa TOC Shimadzu. Model usia telah dihasilkan daripada data karbon-14
cengkerang sempurna (Anadara sp., Mactra sp., Meiocardia sp., Pecten
sp.) yang dijumpai di dalam teras sedimen. Jangka usia teras sedimen yang
dikaji meliputi tempoh Northgrippian (~7840 cal yr BP). Nilai purata TOC adalah
0.23±0.07% dengan pola pengurangan ke arah Meghalayan. Kandungan CaCO3
berjulat daripada 3.38% hingga 12.05% dengan purata 6.95±2.05%, dan meningkat
ke arah Meghalayan. Kami berpendapat bahawa TOC dan CaCO3 mewakili
organisma-organisma berasaskan organik dan karbonat secara relatifnya. Senario
ini menggambarkan suatu perubahan dalam struktur komuniti telah berlaku di
kawasan kajian di mana populasi organisma organik (karbonat) kekal rendah
(meningkat) dari Northgrippian menuju Meghalayan. Kajian ini merupakan
percubaan pertama dalam pembinaan semula rekod-rekod paleoproduktiviti di
perairan Malaysia.
Kata kunci: paleoproduktiviti, jumlah
karbon organik, kalsium karbonat, Holosen, selatan Laut China Selatan
References
1. Müller,
P. J. and Suess, E. (1979). Productivity, sedimentation rate, and sedimentary
organic matter in the oceans-I. Organic carbon preservation. Deep Sea Research Part A, Oceanographic
Research Papers, 26(12): 1347-1362.
2. Canfield,
D. E. (1994). Factors influencing organic carbon preservation in marine
sediments. Chemical Geology, 114: 315-329.
3. Zonneveld,
K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K. C.,
Huguet, C., Koch, B. P., de Lange, G. J., Middelburg, J. J., Mollenhauer, G.,
Prahl, F. G., Rethemeyer, J. and Wakeham, S. G. (2010). Selective preservation
of organic matter in marine environments; processes and impact on the
sedimentary record. Biogeosciences,
7: 483-511.
4. Rühlemann,
C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P. J. and Wefer, G.
(1996). Late quaternary productivity changes in the western equatorial
Atlantic: Evidence from 230Th-normalized carbonate and organic
carbon accumulation rates. Marine Geology,
135: 127-152.
5. Rühlemann,
C., Muller, P. J. and Schneider, R. R. (1999). Organic carbon and carbonate as
paleoproductivity proxies: Examples from high and low productivity areas of the
tropical Atlantic. In 1999, Use of
Proxies in Paleoceanography: Examples from the South Atlantic (Fischer, G.
and Wefer, G. (eds), Springer-Verlag
Berlin Heidelberg, pp. 315-344.
6. Averyt,
K. B. and Paytan, A. (2004). A comparison of multiple proxies for export
production in the equatorial Pacific, Paleoceanography,
19: PA4003.
7. Anderson,
R. F. and Winckler, G. (2005). Problems with paleoproductivity proxies. Paleoceanography, 20: PA3012.
8. Su, X.,
Liu, C., Beaufort, L., Tian, J. and Huang, E. (2013). Late quaternary coccolith
records in the South China Sea and East Asian monsoon dynamics. Global and Planetary Change, 11: 88-96.
9. Wang, L.
W. and Lin, H. L. (2004). Data report: Carbonate and organic carbon contents of
sediments from Sites 1143 and 1146 in the South China Sea. In: Prell, W. L.,
Wang, P., Blum, P., Rea, D. K., and Clemens, S. C. (Eds.), ODP Proceedings, Scientific Results, 184: 1-9.
10. Tyson,
R. V. (2001). Sedimentation rate, dilution, preservation and total organic
carbon: some results of a modelling study. Organic
Geochemistry, 32: 333-339.
11. Meyers,
P. A. and Eadie, B. J. (1993). Sources, degradation and recycling of organic
matter associated with sinking particles in Lake Michigan. Organic Geochemistry, 20(1): 47-56.
12. Sathiamurthy,
E. and Voris, H. K. (2006). Maps of Holocene sea level transgression and
submerged lakes on the Sunda shelf. The
Natural History Journal of Chulalongkorn University, Supplement 2: 1-44.
13. Smith,
D. E., Harrison, S., Firth, C. R. and Jordan, J. T. (2011). The early Holocene
sea level rise. Quaternary Science
Reviews, 30: 1846-1860.
14. Tamburini,
F., Adatte, T., Föllmi, K., Bernasconi, S. M. and Steinmann, P. (2003).
Investigating the history of East Asian monsoon and climate during the last
glacial-interglacial period (0-140 000 years): Mineralogy and geochemistry of
ODP Sites 1143 and 1144, South China Sea. Marine
Geology, 201: 147-168.
15. Kamaruzzaman,
B. Y., Ong, M. C., Noor Azhar, M. S., Shahbudin, S., and Jalal, K. C. A.
(2008). Geochemistry of sediment in the major estuarine mangrove forest of
Terengganu region, Malaysia. American
Journal of Applied Sciences, 5(12): 1707-1712.
16. Natural
History Museum Rotterdam (2018). Collection database. Retrieved from http://www.marinespecies.org/nmr
[Accessed online March 2018].
17. Reimer,
P., Bard, E., Bayliss, A., Beck, J., Blackwell, P. and Ramsey, C. (2013).
IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP.
Radiocarbon, 55(4): 1869-1887.
18. Mohamed,
C. A. R., Mahmood, Z. U. W. and Ahmad, Z. (2008). Recent sedimentation of
sediments in the coastal waters Peninsular Malaysia. Pollution Research, 27(1): 27-36.
19. Szmytkiewicz,
A. and Zalewska, T. (2014). Sediment deposition and accumulation rates
determined by sediment trap and 210Pb isotope methods in the Outer
Puck Bay (Baltic Sea). Oceanologia,
56(1): 85-106.
20. Reichart,
G. J., den Dulk, M.,Visser, H. J., Van der Weijden, C. H. and Zachariasse, W.
J. (1997). A 225 kyr record of dust supply, paleoproductivity and the oxygen
minimum zone from the Murray ridge (Northern Arabian Sea), Palaeogeography Palaeoclimatology Palaeoecology, 134(1-4): 149-169.
21. Schulz,
H., von Rad, U. and Erlenkeuser, H. (1998). Correlation between Arabian Sea and
Greenland climate oscillations of the past 110,000 years. Letters to Nature, 393: 54-57.
22. von Rad,
U., Schaaf., M., Michels, K. H., Schulz, H., Berger, W. H. and Sirocko, F.
(1999). A 5000-yr Record of climate change in varved sediments from the oxygen
minimum zone off Pakistan, Northeastern Arabian Sea. Quaternary Research, 51: 39-53.
23. Kienast,
A. M., Steinke, S., Stattegger, K., Calvert, S. E., Tto, S. and Chandra, S.
(2001). Synchronous Tropical South China Sea SST change and Greenland warming
during deglaciation. Science,
291(5511): 2132-2134.
24. Meyers,
P. A. and Robinson, R. S. (2001). Data report: Carbonate and organic carbon
contents of sediments from Site 1087, Southern Cape Basin. In Wefer, G., Berger, W. H., and Richter, C. (Eds.), Proceedings of the Ocean Drilling Program,
Scientific Results, 175: 1-11.
25. Black,
H. D., Anderson, W. T. and Alvarez Zarikian, C.A. (2018). Data report: organic
matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346
Sites U1426, U1427, and U1429. In
Tada, R., Murray, R.W., Alvarez Zarikian, C.A., and the Expedition 346
Scientists (Eds.), Proceedings of the
Integrated Ocean Drilling Program, 346: 1-9.
26. Shiau,
L. J., Yu, P. Sen, Wei, K. Y., Yamamoto, M., Lee, T. Q., Yu, E. F., Fang, T.
and Chen, M. T. (2008). Sea surface temperature, productivity, and terrestrial
flux variations of the southeastern South China Sea over the past 800000 years
(IMAGES MD972142). Terrestrial,
Atmospheric and Oceanic Sciences, 19(4): 363-376.