Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 1009 - 1017

DOI: 10.17576/mjas-2019-2306-09

 

 

 

PALEOPRODUCTIVITY VARIATION IN TERENGGANU OFFSHORE DURING HOLOCENE BASED ON TOTAL ORGANIC CARBON AND CaCO3 RECORDS

 

(Variasi Paleoproduktiviti di Luar Pesisir Pantai Terengganu Ketika Holosen Berdasarkan Rekod Jumlah Karbon Organik dan CaCO3)

 

Erick Naim1, Hasrizal Shaari1,2*, Mohd Fadzil Akhir1

 

1Institute of Oceanography and Environment

2Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author:  riz@umt.edu.my

 

 

Received: 30 October 2018; Accepted: 26 September 2019

 

 

Abstract

In this study, a sediment core (TER16-GC13C) length 180 cm was sampled in the offshore area of Terengganu, southern South China Sea (SSCS) with RV Discovery to establish the paleoproductivity records during the Holocene. The concentrations of total organic carbon (TOC) and calcium carbonate (CaCO3) were analyzed by using a Shimadzu TOC Analyzer. The age model was established from carbon-14 data of the intact shells (Anadara sp., Mactra sp., Meiocardia sp., Pecten sp.) found within the sediment core. The time frame of the analyzed sediment core sample covered the Northgrippian (~7840 cal yr BP). Average TOC value was 0.23±0.07% with a decreasing trend towards Meghalayan. CaCO3 content ranged from 3.38% to 12.05% with an average of 6.95±2.05% with an increasing trend towards Meghalayan. We suggested that TOC and CaCO3 represent the organic and carbonate-based organisms, respectively. This scenario suggested that a change in community structure had occurred in the study site in which organic (calcareous) organism population had remained low (increased) from Northgrippian towards Meghalayan. This work is the first attempt in reconstructing paleoproductivity records in Malaysian waters.

 

Keywords:  paleoproductivity, total organic carbon, calcium carbonate, Holocene, southern South China Sea

 

Abstrak

Dalam kajian ini, teras sedimen (TER16-GC13C) sepanjang 180 cm telah disampel di kawasan luar pesisir pantai Terengganu, selatan Laut China Selatan (SSCS) dengan RV Discovery untuk menyediakan rekod-rekod paleoproduktiviti ketika Holosen. Kandungan jumlah karbon organik (TOC) dan kalsium karbonat (CaCO3) telah dianalisa menggunakan penganalisa TOC Shimadzu. Model usia telah dihasilkan daripada data karbon-14 cengkerang sempurna (Anadara sp., Mactra sp., Meiocardia sp., Pecten sp.) yang dijumpai di dalam teras sedimen. Jangka usia teras sedimen yang dikaji meliputi tempoh Northgrippian (~7840 cal yr BP). Nilai purata TOC adalah 0.23±0.07% dengan pola pengurangan ke arah Meghalayan. Kandungan CaCO3 berjulat daripada 3.38% hingga 12.05% dengan purata 6.95±2.05%, dan meningkat ke arah Meghalayan. Kami berpendapat bahawa TOC dan CaCO3 mewakili organisma-organisma berasaskan organik dan karbonat secara relatifnya. Senario ini menggambarkan suatu perubahan dalam struktur komuniti telah berlaku di kawasan kajian di mana populasi organisma organik (karbonat) kekal rendah (meningkat) dari Northgrippian menuju Meghalayan. Kajian ini merupakan percubaan pertama dalam pembinaan semula rekod-rekod paleoproduktiviti di perairan Malaysia.

 

Kata kunci:  paleoproduktiviti, jumlah karbon organik, kalsium karbonat, Holosen, selatan Laut China Selatan

 

References

1.       Müller, P. J. and Suess, E. (1979). Productivity, sedimentation rate, and sedimentary organic matter in the oceans-I. Organic carbon preservation. Deep Sea Research Part A, Oceanographic Research Papers, 26(12): 1347-1362.

2.       Canfield, D. E. (1994). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114: 315-329.

3.       Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K. C., Huguet, C., Koch, B. P., de Lange, G. J., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J. and Wakeham, S. G. (2010). Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences, 7: 483-511.

4.       Rühlemann, C., Frank, M., Hale, W., Mangini, A., Mulitza, S., Müller, P. J. and Wefer, G. (1996). Late quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Marine Geology, 135: 127-152.

5.       Rühlemann, C., Muller, P. J. and Schneider, R. R. (1999). Organic carbon and carbonate as paleoproductivity proxies: Examples from high and low productivity areas of the tropical Atlantic. In 1999, Use of Proxies in Paleoceanography: Examples from the South Atlantic (Fischer, G. and Wefer, G. (eds), Springer-Verlag Berlin Heidelberg, pp. 315-344.

6.       Averyt, K. B. and Paytan, A. (2004). A comparison of multiple proxies for export production in the equatorial Pacific, Paleoceanography, 19: PA4003.

7.       Anderson, R. F. and Winckler, G. (2005). Problems with paleoproductivity proxies. Paleoceanography, 20: PA3012.

8.       Su, X., Liu, C., Beaufort, L., Tian, J. and Huang, E. (2013). Late quaternary coccolith records in the South China Sea and East Asian monsoon dynamics. Global and Planetary Change, 11: 88-96.

9.       Wang, L. W. and Lin, H. L. (2004). Data report: Carbonate and organic carbon contents of sediments from Sites 1143 and 1146 in the South China Sea. In: Prell, W. L., Wang, P., Blum, P., Rea, D. K., and Clemens, S. C. (Eds.), ODP Proceedings, Scientific Results, 184: 1-9.

10.    Tyson, R. V. (2001). Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry, 32: 333-339.

11.    Meyers, P. A. and Eadie, B. J. (1993). Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochemistry, 20(1): 47-56.

12.    Sathiamurthy, E. and Voris, H. K. (2006). Maps of Holocene sea level transgression and submerged lakes on the Sunda shelf. The Natural History Journal of Chulalongkorn University, Supplement 2: 1-44.

13.    Smith, D. E., Harrison, S., Firth, C. R. and Jordan, J. T. (2011). The early Holocene sea level rise. Quaternary Science Reviews, 30: 1846-1860.

14.    Tamburini, F., Adatte, T., Föllmi, K., Bernasconi, S. M. and Steinmann, P. (2003). Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Marine Geology, 201: 147-168.

15.    Kamaruzzaman, B. Y., Ong, M. C., Noor Azhar, M. S., Shahbudin, S., and Jalal, K. C. A. (2008). Geochemistry of sediment in the major estuarine mangrove forest of Terengganu region, Malaysia. American Journal of Applied Sciences, 5(12): 1707-1712.

16.    Natural History Museum Rotterdam (2018). Collection database. Retrieved from http://www.marinespecies.org/nmr [Accessed online March 2018].

17.    Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P. and Ramsey, C. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP. Radiocarbon, 55(4): 1869-1887.

18.    Mohamed, C. A. R., Mahmood, Z. U. W. and Ahmad, Z. (2008). Recent sedimentation of sediments in the coastal waters Peninsular Malaysia. Pollution Research, 27(1): 27-36.

19.    Szmytkiewicz, A. and Zalewska, T. (2014). Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanologia, 56(1): 85-106.

20.    Reichart, G. J., den Dulk, M.,Visser, H. J., Van der Weijden, C. H. and Zachariasse, W. J. (1997). A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray ridge (Northern Arabian Sea), Palaeogeography Palaeoclimatology Palaeoecology, 134(1-4): 149-169.

21.    Schulz, H., von Rad, U. and Erlenkeuser, H. (1998). Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Letters to Nature, 393: 54-57.

22.    von Rad, U., Schaaf., M., Michels, K. H., Schulz, H., Berger, W. H. and Sirocko, F. (1999). A 5000-yr Record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea. Quaternary Research, 51: 39-53.

23.    Kienast, A. M., Steinke, S., Stattegger, K., Calvert, S. E., Tto, S. and Chandra, S. (2001). Synchronous Tropical South China Sea SST change and Greenland warming during deglaciation. Science, 291(5511): 2132-2134.

24.    Meyers, P. A. and Robinson, R. S. (2001). Data report: Carbonate and organic carbon contents of sediments from Site 1087, Southern Cape Basin. In Wefer, G., Berger, W. H., and Richter, C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 175: 1-11.

25.    Black, H. D., Anderson, W. T. and Alvarez Zarikian, C.A. (2018). Data report: organic matter, carbonate, and stable isotope stratigraphy from IODP Expedition 346 Sites U1426, U1427, and U1429. In Tada, R., Murray, R.W., Alvarez Zarikian, C.A., and the Expedition 346 Scientists (Eds.), Proceedings of the Integrated Ocean Drilling Program, 346: 1-9.

26.    Shiau, L. J., Yu, P. Sen, Wei, K. Y., Yamamoto, M., Lee, T. Q., Yu, E. F., Fang, T. and Chen, M. T. (2008). Sea surface temperature, productivity, and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (IMAGES MD972142). Terrestrial, Atmospheric and Oceanic Sciences, 19(4): 363-376.

 

 

 

 




Previous                    Content                    Next