Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 1018 - 1029

DOI: 10.17576/mjas-2019-2306-10

 

 

 

 

THE COMBINED EFFECT OF ZINC AND pH ON GROWTH RATE AND CHLOROPHYLL CONTENT OF BROWN SEAWEED, Padina boryana

 

(Kesan Gabungan Zink dan pH ke Atas Kadar Pertumbuhan dan Kandungan Klorofil Rumpai Laut Perang, Padina boryana)

 

Nabeela Ali Nasser Al-Awlaqi1*, Noor Azhar Mohamed Shazili1, Nurulnadia Mohd Yusoff2

 

1Institute of Oceanography and Environment

2Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  Nabeela.awlaqi@gmail.com

 

 

Received: 30 October 2018; Accepted: 26 September 2019

 

 

Abstract

Brown seaweed, Padina boryana is found along the coast of Terengganu, Malaysia and may serve as a potential heavy metal biomonitor in the coastal zones. To better understand the impact of heavy metal pollution on P. boryana at varying seawater pH levels, the combined effect of zinc (Zn) and pH on its growth rate and chlorophyll content was investigated in laboratory exposures. After exposure for 21 days in a mixed treatment of 6 pH variations (4 to 9) and three Zn concentrations (30, 150, 300 ppb), maximum growth rate was observed in controlled treatments at pH 8 with no added Zn, whereas treatments at pH 4 and 9 showed negative growth rates after 18 days. The growth rate and chlorophyll content of P. boryana decreased significantly with an increase in Zn concentration. At pH 6, 7 and 8, P. boryana showed significant decreases (p < 0.05) in growth rates and chlorophyll content in all concentrations of Zn compared with control plants (no Zn). At pH of 6.0 and below, controls were also affected with significantly reduced growth rates and chlorophyll contents while Zn treated seaweed showed significant effects compared to these controls. The effect of pH and Zn on all measured factors was obvious on Day 6 onwards, whereas the interaction effect between them was significant on chlorophyll content throughout the experiment. From Day 9 onwards, the growth rate and chlorophyll content showed significant correlation among each other.

 

Keywords:  brown seaweed, Padina boryana, zinc, pH, growth

 

Abstrak

Rumpai laut Perang, Padina boryana ditemui di sepanjang pantai Terengganu, Malaysia dan boleh menjadi biopemantau logam berat yang berpotensi di kawasan pantai. Untuk lebih memahami kesan pencemaran logam berat terhadap P. boryana pada pH air laut yang berbeza, kesan gabungan zink (Zn) dan pH terhadap kadar pertumbuhan dan kandungan klorofil telah disiasat dalam makmal. Selepas pendedahan selama 21 hari dalam rawatan campuran 6 variasi pH (4 hingga 9) dan tiga kepekatan Zn (30, 150, 300 ppb), kadar pertumbuhan maksimum diperhatikan dalam rawatan kawalan pada pH 8 tanpa tambahan Zn, manakala rawatan di pH 4 dan 9 menunjukkan kadar pertumbuhan negatif selepas 18 hari. Kadar pertumbuhan, kandungan klorofil P. boryana menurun dengan ketara dengan peningkatan kepekatan Zn. Pada pH 6, 7 dan 8, P. boryana menunjukkan penurunan ketara (p < 0.05) dalam kadar pertumbuhan, kandungan klorofil dalam semua kepekatan Zn berbanding dengan rawatan kawalan (tiada Zn). Pada pH 6.0 dan ke bawah, rumpai laut dalam rawatan kawalan juga terjejas dengan kadar pertumbuhan dan kandungan klorofil yang merosot manakala rumpai laut yang didedah kepada Zn menunjukkan kesan yang lebih ketara berbanding dengan rawatan kawalan. Kesan pH dan Zn terhadap semua faktor yang diukur adalah jelas pada hari ke-6 dan seterusnya, manakala kesan interaksi di antara mereka adalah signifikan terhadap kandungan klorofil di sepanjang eksperimen. Pada hari ke-9 dan seterusnya, kadar pertumbuhan dan kandungan klorofil menunjukkan korelasi yang signifikan antara satu sama lain.

 

Kata kunci:  rumpai laut perang, Padina boryana, zink, pH, pertumbuhan

 

References

1.       Sheng, P. X., Ting, Y.-P., Chen, J. P. and Hong, L. (2004). Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275: 131-141.

2.       Plum, L. M., Rink, L. and Haase, H. (2010). The essential toxin: Impact of Zinc on human health. International Journal of Environmental Research and Public Health, 7(4): 1342-1365.

3.       Stengel, D. B., Macken, A., Morrison, L. and Morley, N. (2004). Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology. Marine Pollution Bulletin, 48: 902-909.

4.       Amado Filho, G. M., Karez, C. S., Andrade, L. R., Yoneshigue-Valentin, Y. and Pfeiffer, W. C. (1997). Effects on growth and accumulation of zinc in six seaweed species. Ecotoxicology and Environmental Safety, 37: 223-228.

5.       Adams, T. Mc. and Sanders, J. R. (1984). The effect of pH on the release to solution of zinc, copper and nickel from metal-loaded sewage sludges. Environmental Pollution Series B, Chemical and Physical, 8(2): 85 – 99.

6.       Visviki, I. and Palladino, J. (2001). Growth and cytology of Chlamydomonas acidophila under acidic stress. Bulletin of Environmental Contamination and Toxicology, 66(5): 623-630.

7.       Fabry, V. J., Seibel, B. A., Feely, R. A. and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3): 414-432.

8.       Gensemer, R. W., Smith, R. E. and Duthie, H. C. (1993). Comparative effects of pH and aluminum on silica-limited growth and nutrient uptake in Aastrionella ralfsii var americana (Bacillariophyceae) 1. Journal of Phycology, 29(1): 36-44.

9.       Hansen, P. J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquatic Microbial Ecology, 28(3): 279-288.

10.    Al-Shwafi, N. A. and Rushdi, A. I. (2008). Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environmental Geology, 55(3): 653-660.

11.    Faedeh, A., Hossein, R. and Hossein, Z. (2013). Metal concentrations in Padina species and associated sediment from Nayband Bay and Bostaneh Port, Northern Coast of the Persian Gulf, Iran. Journal of the Persian Gulf, 4(11): 17-24.

12.    Mohamedein, L. I., El-Moselhy, K., Diab, A. A. and Tolba, M. R. (1999). Levels of some heavy metals in coastal water, sediment and the Limpet Patella sp. from the northern part of the Suez Gulf (Suez Bay). Egyptian Journal of Aquatic Research, 3(2): 69-84.

13.    Azlisham, M., Vedamanikam, V. J. and Shazili, N. A. M. (2009). Concentrations of cadmium, manganese, copper, zinc, and lead in the tissues of the oyster (Crassostrea iredalei) obtained from Setiu Lagoon, Terengganu, Malaysia. Toxicological and Environmental Chemistry, 91(2): 251-258.

14.    Kamaruzzaman, Y., Ong, M. C. and Jalal, K. C. A. (2008). Levels of copper, zinc and lead in fishes of Mengabang Telipot River, Terengganu, Malaysia. Journal of Biological Sciences, 8(7): 1181-1186.

15.    Kamaruzzaman, Y., Zaleha, K., Ong, M. C. and Willison, K. (2007). Copper and zinc in three dominant brackish water fish species from Paka estuary, Terengganu, Malaysia. Malaysian Journal of Science, 26(2): 65 – 70.

16.    Geraldino, P. J. L., Liao, L. M. and Boo, S. M. (2005). Morphological study of the marine algal genus Padina (Dictyotales, Phaephyceae) from Southern Philippines: 3 species new to Philippines. Algae, 20(2): 99-112.

17.    Wichachucherd, B., Prathep, A. and Zuccarello, G. C. (2014). Phylogeography of Padina boryana (Dictyotales, Phaeophyceae) around the Thai-Malay Peninsula. European Journal of Phycology, 49(3): 313-323.

18.    Bryan, G. W. and Hummerstone, L. G. (1973). Brown seaweeds as an indicator of heavy metals in estuaries in southwest England. Journal of the Marine Biological Association of the United Kingdom, 53: 705-720.

19.    Stengel, D. B. and Dring, M. J. (2000). Copper and iron concentrations in Ascophyllum nodosum (Fucales, Phaeophyta) from different sites in Ireland and after culture experiments in relation to thallus age and epiphytism. Journal of Experimental Marine Biology and Ecology, 246: 145-161.

20.    Qadir, A., Malik, R. N. and Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1-3), 43-59.

21.    El-Sheekh, M. M., El-Naggar, A. H., Osman, M. E. H. and El-Mazaly, E. (2003). Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian Journal of Plant Physiology, 15(3): 159-166.

22.    Zou, D. (2005). Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture, 250(3-4): 726-735.

23.    Mamboya, F., Pratap, H., Mtolera, M. and Björk, M. (2007). Accumulation of copper and zinc and their effects on growth and maximum quantum yield of the brown macroalga Padina gymnospora. Western Indian Ocean Journal of Marine Science, 6(1): 17-28.

24.    Nielsen, M. M., Bruhn, A., Rasmussen, M. B., Olesen, B., Larsen, M. M. and Møller, H. B. (2012). Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. Journal of Applied Phycology, 24(3): 449-458.

25.    Liu, M., Liu, X., Li, M., Fang, M. and Chi, W. (2010). Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosystems Engineering, 106(3): 223-233.

26.    Lignel, A. and Pedersén, M. (1989). Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata. British Phycological Journal, 24: 83-89.

27.    Tee, M. Z., Yong, Y. S., Rodrigues, K. F. and Yong, W. T. L. (2015). Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales) under pH induced stress culture. Aquaculture Reports, 2: 112-116.

28.    Roleda, M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M. and Hurd, C. L. (2015). Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS ONE, 10(10): e0140394.

29.    Roleda, M. Y., Morris, J. N., McGraw, C. M. and Hurd, C. L. (2012). Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biology, 18(3): 854-864.

30.    Cornwall, C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., McGraw, C. M., Hunter, K. A. and Hurd, C. L. (2012). Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48: 137-144.

31.    Menéndez, M., Martinez, M. and Comin, F. A. (2001). A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology, 256: 123-136.

32.    Amado Filho, G. M., Karez, C. S., Pfeiffer, W. C., Yoneshigue-Valentin, Y. and Farina, M. (1996). Accumulation, effects on growth, and localization of zinc in Padina gymnospora (Dictyotales, Phaeophyceae). Hydrobiologia, 326/327: 451-456.

33.    Radić, S., Babića, M., Škobićb, D., Roje, V. and Pevalek-Kozina, B. (2010). Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety, 73: 336-342.

34.    Ouyang, H. L., Kong, X. Z., He, W., Qin, N., He, Q. S., Wang, Y., Wang, R. and Xu, F. L. (2012). Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chinese Science Bulletin, 57(25): 3363-3370.

35.    Khaled, A., Hessein, A., Abdel-Halim, A. M. and Morsy, F. M. (2014). Distribution of heavy metals in seaweeds collected along Marsa-Matrouh beaches, Egyptian Mediterranean Sea. The Egyptian Journal of Aquatic Research, 40(4): 363-371.

36.    Bryan, G. W. (1969). The absorption of zinc and other metals by the brown seaweed Laminaria digitata. Journal of the Marine Biological Association of the United Kingdom, 49: 225-243.

37.    Munda, I. M. (1986). Differences in heavy metals accumulation between vegetative parts of thalli and receptacles in Fucus spiralis L. Botanica Marina, 29(4): 341-350.

 

 

 

 

 

 




Previous                    Content                    Next