Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 1018 - 1029
DOI:
10.17576/mjas-2019-2306-10
THE COMBINED EFFECT OF
ZINC AND pH ON GROWTH RATE AND CHLOROPHYLL CONTENT OF
BROWN SEAWEED, Padina
boryana
(Kesan
Gabungan Zink dan pH ke Atas Kadar Pertumbuhan dan Kandungan Klorofil Rumpai Laut Perang, Padina boryana)
Nabeela Ali Nasser Al-Awlaqi1*, Noor
Azhar Mohamed Shazili1, Nurulnadia Mohd Yusoff2
1Institute
of Oceanography and Environment
2Faculty
of Science and Marine Environment
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia
*Corresponding author: Nabeela.awlaqi@gmail.com
Received: 30 October 2018;
Accepted: 26 September 2019
Abstract
Brown seaweed, Padina boryana
is found along the coast of Terengganu, Malaysia and may serve as a potential
heavy metal biomonitor in the coastal zones. To better understand the impact of
heavy metal pollution on P. boryana
at varying seawater pH levels, the combined effect of zinc (Zn) and pH on its
growth rate and chlorophyll content was investigated in laboratory exposures.
After exposure for 21 days in a mixed treatment of 6 pH variations (4 to 9) and
three Zn concentrations (30, 150, 300 ppb), maximum growth rate was observed in
controlled treatments at pH 8 with no added Zn, whereas treatments at pH 4 and
9 showed negative growth rates after 18 days. The growth rate and chlorophyll
content of P. boryana decreased
significantly with an increase in Zn concentration. At pH 6, 7 and 8, P. boryana showed significant decreases
(p < 0.05) in growth rates and
chlorophyll content in all concentrations of Zn compared with control plants
(no Zn). At pH of 6.0 and below, controls were also affected with significantly
reduced growth rates and chlorophyll contents while Zn treated seaweed showed
significant effects compared to these controls. The effect of pH and Zn on all
measured factors was obvious on Day 6 onwards, whereas the interaction effect
between them was significant on chlorophyll content throughout the experiment. From Day
9 onwards, the growth rate and chlorophyll content showed significant
correlation among each other.
Keywords: brown seaweed, Padina boryana, zinc, pH, growth
Abstrak
Rumpai laut Perang, Padina
boryana ditemui di sepanjang pantai Terengganu, Malaysia dan boleh
menjadi biopemantau logam berat yang berpotensi di kawasan pantai. Untuk lebih
memahami kesan pencemaran logam berat terhadap P. boryana pada
pH air laut yang berbeza, kesan gabungan zink (Zn) dan pH terhadap kadar
pertumbuhan dan kandungan klorofil telah disiasat dalam makmal. Selepas pendedahan selama 21 hari dalam rawatan campuran
6 variasi pH (4 hingga 9) dan tiga kepekatan Zn (30, 150, 300 ppb), kadar
pertumbuhan maksimum diperhatikan dalam rawatan kawalan pada pH 8 tanpa
tambahan Zn, manakala rawatan di pH 4 dan 9 menunjukkan kadar pertumbuhan
negatif selepas 18 hari. Kadar pertumbuhan, kandungan klorofil P. boryana menurun dengan ketara dengan
peningkatan kepekatan Zn. Pada pH 6, 7 dan 8, P. boryana menunjukkan penurunan ketara (p < 0.05) dalam kadar pertumbuhan, kandungan klorofil dalam
semua kepekatan Zn berbanding dengan rawatan kawalan (tiada Zn). Pada pH 6.0
dan ke bawah, rumpai laut dalam rawatan kawalan juga terjejas dengan kadar
pertumbuhan dan kandungan klorofil yang merosot manakala rumpai laut yang
didedah kepada Zn menunjukkan kesan yang lebih ketara berbanding dengan rawatan
kawalan. Kesan pH dan Zn terhadap semua faktor yang diukur adalah jelas pada
hari ke-6 dan seterusnya, manakala kesan interaksi di antara mereka adalah
signifikan terhadap kandungan klorofil di sepanjang eksperimen. Pada hari ke-9
dan seterusnya, kadar pertumbuhan dan kandungan klorofil menunjukkan korelasi
yang signifikan antara satu sama lain.
Kata kunci: rumpai laut perang, Padina boryana, zink, pH, pertumbuhan
References
1. Sheng,
P. X., Ting, Y.-P., Chen, J. P. and Hong, L. (2004). Sorption of lead, copper,
cadmium, zinc and nickel by marine algal biomass: characterization of
biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275: 131-141.
2. Plum, L.
M., Rink, L. and Haase, H. (2010). The essential toxin: Impact of Zinc on human
health. International Journal of
Environmental Research and Public Health, 7(4): 1342-1365.
3. Stengel,
D. B., Macken, A., Morrison, L. and Morley, N. (2004). Zinc concentrations in
marine macroalgae and a lichen from western Ireland in relation to phylogenetic
grouping, habitat and morphology. Marine
Pollution Bulletin, 48: 902-909.
4. Amado
Filho, G. M., Karez, C. S., Andrade, L. R., Yoneshigue-Valentin, Y. and Pfeiffer,
W. C. (1997). Effects on growth and accumulation of zinc in six seaweed
species. Ecotoxicology and Environmental
Safety, 37: 223-228.
5. Adams,
T. Mc. and Sanders, J. R. (1984). The effect of pH on the release to solution
of zinc, copper and nickel from metal-loaded sewage sludges. Environmental Pollution Series B, Chemical
and Physical, 8(2): 85 – 99.
6. Visviki,
I. and Palladino, J. (2001). Growth and cytology of Chlamydomonas acidophila under acidic stress. Bulletin of Environmental Contamination and Toxicology, 66(5):
623-630.
7. Fabry,
V. J., Seibel, B. A., Feely, R. A. and Orr, J. C. (2008). Impacts of ocean
acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3): 414-432.
8. Gensemer,
R. W., Smith, R. E. and Duthie, H. C. (1993). Comparative effects of pH and
aluminum on silica-limited growth and nutrient uptake in Aastrionella ralfsii var americana (Bacillariophyceae) 1. Journal of Phycology, 29(1): 36-44.
9. Hansen,
P. J. (2002). Effect of high pH on the growth and survival of marine
phytoplankton: implications for species succession. Aquatic Microbial Ecology, 28(3): 279-288.
10. Al-Shwafi,
N. A. and Rushdi, A. I. (2008). Heavy metal concentrations in marine green,
brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden. Environmental Geology, 55(3): 653-660.
11. Faedeh,
A., Hossein, R. and Hossein, Z. (2013). Metal concentrations in Padina species and associated sediment
from Nayband Bay and Bostaneh Port, Northern Coast of the Persian Gulf, Iran. Journal of the Persian Gulf, 4(11): 17-24.
12. Mohamedein,
L. I., El-Moselhy, K., Diab, A. A. and Tolba, M. R. (1999). Levels of some
heavy metals in coastal water, sediment and the Limpet Patella sp. from the northern part of the Suez Gulf (Suez Bay). Egyptian Journal of Aquatic Research,
3(2): 69-84.
13. Azlisham,
M., Vedamanikam, V. J. and Shazili, N. A. M. (2009). Concentrations of cadmium,
manganese, copper, zinc, and lead in the tissues of the oyster (Crassostrea iredalei) obtained from
Setiu Lagoon, Terengganu, Malaysia. Toxicological
and Environmental Chemistry, 91(2): 251-258.
14. Kamaruzzaman,
Y., Ong, M. C. and Jalal, K. C. A. (2008). Levels of copper, zinc and lead in
fishes of Mengabang Telipot River, Terengganu, Malaysia. Journal of Biological Sciences, 8(7): 1181-1186.
15. Kamaruzzaman,
Y., Zaleha, K., Ong, M. C. and Willison, K. (2007). Copper and zinc in three
dominant brackish water fish species from Paka estuary, Terengganu, Malaysia. Malaysian Journal of Science, 26(2): 65
– 70.
16. Geraldino,
P. J. L., Liao, L. M. and Boo, S. M. (2005). Morphological study of the marine
algal genus Padina (Dictyotales,
Phaephyceae) from Southern Philippines: 3 species new to Philippines. Algae, 20(2): 99-112.
17. Wichachucherd,
B., Prathep, A. and Zuccarello, G. C. (2014). Phylogeography of Padina boryana (Dictyotales,
Phaeophyceae) around the Thai-Malay Peninsula. European Journal of Phycology, 49(3): 313-323.
18. Bryan,
G. W. and Hummerstone, L. G. (1973). Brown seaweeds as an indicator of heavy
metals in estuaries in southwest England. Journal
of the Marine Biological Association of the United Kingdom, 53: 705-720.
19. Stengel,
D. B. and Dring, M. J. (2000). Copper and iron concentrations in Ascophyllum nodosum (Fucales,
Phaeophyta) from different sites in Ireland and after culture experiments in
relation to thallus age and epiphytism. Journal
of Experimental Marine Biology and Ecology, 246: 145-161.
20. Qadir,
A., Malik, R. N. and Husain, S. Z. (2008). Spatio-temporal variations in water
quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment,
140(1-3), 43-59.
21. El-Sheekh,
M. M., El-Naggar, A. H., Osman, M. E. H. and El-Mazaly, E. (2003). Effect of cobalt
on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian Journal of
Plant Physiology, 15(3): 159-166.
22. Zou, D.
(2005). Effects of elevated atmospheric CO2 on growth,
photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae,
Phaeophyta). Aquaculture, 250(3-4):
726-735.
23. Mamboya,
F., Pratap, H., Mtolera, M. and Björk, M. (2007). Accumulation of copper and
zinc and their effects on growth and maximum quantum yield of the brown
macroalga Padina gymnospora. Western Indian Ocean Journal of Marine
Science, 6(1): 17-28.
24. Nielsen,
M. M., Bruhn, A., Rasmussen, M. B., Olesen, B., Larsen, M. M. and Møller, H. B.
(2012). Cultivation of Ulva lactuca with manure for simultaneous bioremediation
and biomass production. Journal of
Applied Phycology, 24(3): 449-458.
25. Liu, M.,
Liu, X., Li, M., Fang, M. and Chi, W. (2010). Neural-network model for
estimating leaf chlorophyll concentration in rice under stress from heavy
metals using four spectral indices. Biosystems
Engineering, 106(3): 223-233.
26. Lignel,
A. and Pedersén, M. (1989). Effects of pH and inorganic carbon concentration on
growth of Gracilaria secundata. British Phycological Journal, 24: 83-89.
27. Tee, M.
Z., Yong, Y. S., Rodrigues, K. F. and Yong, W. T. L. (2015). Growth rate
analysis and protein identification of Kappaphycus
alvarezii (Rhodophyta, Gigartinales) under pH induced stress culture. Aquaculture Reports, 2: 112-116.
28. Roleda,
M. Y., Cornwall, C. E., Feng, Y., McGraw, C. M., Smith, A. M. and Hurd, C. L.
(2015). Effect of ocean acidification and pH fluctuations on the growth and
development of coralline algal recruits, and an associated benthic algal
assemblage. PLoS ONE, 10(10):
e0140394.
29. Roleda,
M. Y., Morris, J. N., McGraw, C. M. and Hurd, C. L. (2012). Ocean acidification
and seaweed reproduction: increased CO2 ameliorates the negative
effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales,
Phaeophyceae). Global Change Biology,
18(3): 854-864.
30. Cornwall,
C. E., Hepburn, C. D., Pritchard, D., Currie, K. I., McGraw, C. M., Hunter, K.
A. and Hurd, C. L. (2012). Carbon-use strategies in macroalgae: differential
responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48: 137-144.
31. Menéndez,
M., Martinez, M. and Comin, F. A. (2001). A comparative study of the effect of
pH and inorganic carbon resources on the photosynthesis of three floating
macroalgae species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology, 256: 123-136.
32. Amado
Filho, G. M., Karez, C. S., Pfeiffer, W. C., Yoneshigue-Valentin, Y. and
Farina, M. (1996). Accumulation, effects on growth, and localization of zinc in
Padina gymnospora (Dictyotales,
Phaeophyceae). Hydrobiologia,
326/327: 451-456.
33. Radić,
S., Babića, M., Škobićb, D., Roje, V. and Pevalek-Kozina, B. (2010).
Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety, 73: 336-342.
34. Ouyang,
H. L., Kong, X. Z., He, W., Qin, N., He, Q. S., Wang, Y., Wang, R. and Xu, F.
L. (2012). Effects of five heavy metals at sub-lethal concentrations on the
growth and photosynthesis of Chlorella vulgaris.
Chinese Science Bulletin, 57(25):
3363-3370.
35. Khaled,
A., Hessein, A., Abdel-Halim, A. M. and Morsy, F. M. (2014). Distribution of
heavy metals in seaweeds collected along Marsa-Matrouh beaches, Egyptian
Mediterranean Sea. The Egyptian Journal
of Aquatic Research, 40(4): 363-371.
36. Bryan,
G. W. (1969). The absorption of zinc and other metals by the brown seaweed Laminaria digitata. Journal of the Marine Biological Association of the United Kingdom,
49: 225-243.
37. Munda,
I. M. (1986). Differences in heavy metals accumulation between vegetative parts
of thalli and receptacles in Fucus
spiralis L. Botanica Marina,
29(4): 341-350.