Malaysian Journal of Analytical Sciences Vol 23 No 6 (2019): 963 - 979

DOI: 10.17576/mjas-2019-2306-05

 

 

 

ANALYSIS OF VOLATILE COMPOUNDS OF SPICES GROWN IN BANYUMAS DISTRICT, JAWA TENGAH, INDONESIA USING SOLID PHASE MICROEXTRACTION-GAS CHROMATOGRAPHY MASS SPECTROMETRY

 

(Analisis Sebatian Meruap bagi Rempah yang Tumbuh di Daerah Banyumas, Jawa  Tengah, Indonesia Menggunakan Pengekstrakan Mikro Fasa Pepejal-Kromatografi Gas Spektrometri Jisim)

 

Fajar Hardoyono1*, KikinWindhani2, Herman Sambodo2, Hary Pudjianto2

 

1Laboratory of Physics, Faculty of Islamic Education and Teaching Sciences,

Institut Agama Islam Negeri Purwokerto, Jalan A. Yani 40 A, Purwokerto, Indonesia

2Department of Economics and Development Studies, Faculty of Economics and Business,

Universitas Jenderal Soedirman, Jalan HR. Bunyamin 708, Purwokerto, Indonesia

 

*Corresponding author:  hardoyono@iainpurwokerto.ac.id

 

 

Received: 14 October 2018; Accepted: 31 October 2019

 

 

Abstract

Indonesia is well-known as one of high-quality spices producers in the world. Some of the spices products from Indonesia show high economic value in the European market due to their taste, flavour, and deliciousness. The quality of Indonesian spices was contributed by specific volatile constituents identified in the essential oils. This paper investigated major volatile constituents from seven types of spice grown in Banyumas District, Jawa Tengah, i.e. pepper, nutmeg, cinnamon, clove, chilli pepper, ginger, and turmeric. For experiment, 5 kg of each spice was collected from the farm surrounding Banyumas District, Jawa Tengah. Specific parts of these materials were selected. Pepper, nutmeg, and cloves used the seeds; ginger and turmeric used the rhizomes; while cinnamon used the bark. Each spice was prepared separately through these procedures: (1) slicing the spices; (2) drying the spices in a drying cabinet for 24 hours at 40 °C; (3) grinding the dried spices to powder for 5 minutes at 2500 rpm. For solid phase microextraction-gas chromatography mass spectrometry (SPME-GC/MS) analysis, 200 mg of spice powder was put in a vial glass. The fibre extracted volatile compounds of spice. Mass spectrometry detector identified the volatile compounds based on molecularly mass of molecules. Data tabulation of seven SPME-GC/MS chromatograms identified 69 volatile compounds in seven types of spice. Major volatile compounds dominant in pepper were caryophyllene and δ-limonene. Myristicin, methyl-eugenol, terpinene-4-ol, and asarone were major compounds in nutmeg. Cinnamon and clove were dominated by cinnamaldehyde and γ-muurolene, respectively. β-elemene and α-muurolene were identified as major compounds in chilli pepper. Meanwhile, ginger and turmeric were dominated by sesquiphellandrene and ar-tumerone, respectively. Some major compounds identified in these spices were bioactive and efficacious for human health as anticancer, antioxidant, and antitumor.

 

Keywords:    Indonesian spices, volatile compounds, solid phase microextraction-gas chromatography mass spectrometry

 

Abstrak

Indonesia terkenal dengan produk rempah berkualiti tinggi. Beberapa produk rempah dari Indonesia menunjukkan nilai ekonomi yang tinggi di pasar Eropha kerana rasa, aroma dan kelazatannya. Kualiti rempah Indonesia disebabkan oleh juzuk sebatian meruap yang dikenalpasti di dalam minyak pati. Kajian ini menyiasat sebatian meruap utama pada 7 jenis rempah Indonesia yang tumbuh di daerah Banyumas, iaitu lada hitam, buah pala, kayu manis, cengkih, cili, halia dan kunyit. Untuk penelitian, setiap 5 kg rempah diperoleh dari kebun di sekitar daerah Banyumas, Jawa Tengah. Bahagian khusus dari bahan mentah dipilih untuk eksperimen. Untuk lada hitam, buah pala, dan cengkih menggunakan biji, halia dan kunyit menggunakan rhizom, manakala kayu manis menggunakan pelepah. Selanjutnya, setiap rempah disiapkan untuk analisa pengekstrakan mikro fasa pepejal-kromatografi gas spektrometri jisim (SPME-GCMS) melalui prosedur berikut: (1) Pengirisan rempah; (2) pengeringan rempah selama 24 jam pada suhu 40 °C; (3) Penggilingan rempah kering menjadi serbuk selama 5 minit pada kelajuan 2500 rpm. Bagi analisa pengekstrakan mikro fasa pepejal-kromatografi gas spektrometri jisim SPME-GCMS, 10 mg serbuk rempah diletakkan di dalam vial kaca. Spektrometer jisim mengenalpasti sebatian meruap berdasarkan berat molekul. Olahan data kromatogram SPME-GCMS merekodkan 60 sebatian meruap pada 7 jenis rempah Indonesia. Sebatian utama bagi lada hitam ialah kariofelena dan δ-limonena. Miristisin, metil-eugenol, terpinen-4-ol dan asaron merupakan sebatian utama bagi buah pala. Kayu manis dan cengkih, masing -masing mengandungi sinamaldehid dan γ-muurolena. β-elemene dan α-muurolene dikenalpasti sebagai sebatian utama bagi sampel cili. Manakala, halia dan kunyit masing-masing mengandungi seskuifelandrena dan ar-tumeron. Semua sebatian yang dikenalpasti pada rempah ini bersifat bioaktif dan berkhasiat bagi kesihatan manusia sebagai antikanser, antioksidan, dan antitumor.

 

Kata kunci:    empah Indonesia, sebatian meruap, pengekstrakan mikro fasa pepejal-kromatografi gas spektrometri jisim

 

References

1.       Hannigan, T. A. (2015). Brief history of Indonesia, sultans, spices, and tsunamis: the incredible story of southeast asia largest nation. Tuttle Publishing, Vermont. pp: 50-55.

2.       Drakeley, S. (2005). The history of Indonesia. Greenwood Press, Connecticut. pp: 23-37.

3.       Ricklefs, M.C. (2001). A history of modern Indonesia since c. 1200. Palgrave, London. pp: 26-30.

4.       Gerard, F. and Ruf, F. (2001). Agriculture in crisis: People, Commodities and Natural Resources in Indonesia, 1996-2000. Curzon Press, Richmond. pp.384-395

5.       Ardiyanti, S.T. (2018). Potency of Indonesian Spices Exported Products. Leaflet Publishing of Agency for the Assessment and Development of Trade, Ministry of Trade Republic of Indonesia, 2018. Retrieved from http://bppp.kemendag.go.id/leaflet_artikel_perdagangan/view/MjI%3D. [Accessed online 26 January 2018].

6.       CBI Ministry of Foreign Affair (2018). Market Insight for Indonesian Spices. Tailored market intelligence: EU market insights for Indonesian spices). Retrieved from https://www.cbi.eu/ sites/default/files/ market_information/researches/tailored-information-indonesian-spices-eu-market-insights-indonesia-europe-spices-herbs-2013.pdf. [Accessed online 26 January 2018].

7.       Raghavan, S. (2007). Handbook of spices, seasoning, and flavorings. CRC Press, New York. pp: 36-38.

8.       Peter, K.V. (2004). Handbook of herbs and spices. CRC Press, New York. pp: 14-15.

9.       Yu, G.-W., Cheng, Q., Nie, J., Wang, P., Wang, X.-J., Li, Z.-G. and Lee, M.-R. (2001). DES-based microwave hydro-distillation coupled with GC-MS for analysis of essential oil from black pepper (Piper nigrum) and white pepper. Analytical Methods, 9(48): 6777-6784.

10.    Marques, A. M., Fingolo, C. E. and Kaplan, M. A. C. (2017). HSCCC separation and enantiomeric distribution of key volatile constituents of Piper claussenianum (Miq.) C. DC. (Piperaceae). Food and Chemical Toxicology, 109: 1111-1117.

11.    Muchtaridi, Subarnas, A., Apriantono, A. and Mustarichie, R. (2010). Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice. International Journal of Molecular Sciences, 11: 4771-4781.

12.    Verma, R. S., Padalia, R. C. and Chauhan, A. (2012). Fragrant volatile oil composition of nutmeg geranium (Pelargonium fragrans Willd.) from India. Natural Product Research, 27(8): 761-766.

13.    Malsawmtluangia, L., Nautiyala, B. P., Hazarikaa, T., Chauhan, R. S. and Tavac, A. (2016). Essential oil composition of bark and leaves of Cinammoum verum Bertch from Mizoram, North East India. Journal of Essential Oil Research, 28 (6): 551-556.

14.    Sandner, D., Krings, U. and Berger, R. G. (2017). Volatiles from Cinnamomum cassia buds. Zeitschrift fur Naturforschung, C. 73(1): 67-75.

15.    Kasai, H., Shirao, M. and Ikegami-Kawai, M. (2016). Analysis of volatile compounds of clove (syzygium aromaticum) buds as influenced by growth phase and investigation of antioxidant activity of clove extracts. Flavour Fragrance Journal, 31: 178-184.

16.    El-Mesallamy, L. A. M. D., El-Gerby, M., Abd El Azim, M. H. M, and Awad, A. (2012). Antioxidant, antimicrobial activities and volatile constituents of clove flower buds oil. Journal of Essential Oil Bearing Plants, 15(6), 900-907.

17.    Patel, K., Ruiz, C., Calderon, R., Marcelo, M. and Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction–gas chromatography mass spectrometry (SPME–GCMS). Food Research International, 89(1): 471-475.

18.    Gurnani, N., Gupta, M., Mehta, D. and Mehta, B. K. (2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal of Taibah University for Science, 10: 462–470.

19.    Toure, A. and Xiaomin, Z. (2007). Gas chromatographic analysis of volatile components of Guinean and Chinese ginger oils (Zingiber officinale) extracted by steam distillation. Journal of Agronomy, 6: 350-355.

20.    Mesomo, M. C., Corazza, M. L., Ndiaye, P. M. and Santa, O. R. D. (2013). Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. The Journal of Supercritical Fluids, 80: 44-49.

21.    Tyagi, A. K., Pasad, S., Yuan, W., Li, S. and Aggarwal, B. B. (2015). Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: Comparison with curcumin. Investigational New Drugs, 33(6), 1175:1186.

22.    Xiang, H., Zhang, L., Yang, Z., Chen, F., Zheng, X. and Liu, X. (2017). Chemical compositions, anti-oxidative, antimicrobial, anti-inflammatory and antitumor activities of Curcuma aromatic Salisb. essential oils. Industrial Crops and Products, 108: 6-16.

23.    Dupuy, N., Molinet, J., Mehl, F., Nanlohy, F., Le Dreau, Y. and Kister, J. (2013). Chemometric analysis of mid infrared and gas chromatography data of Indonesian nutmeg essential oils. Industrial Crops and Products, 43: 596–601.

24.    Amelia, B., Saepudin, E., Cahyana, A. H., Rahayu, D. U., Sulistiyoningrum, A. S. and Haib, J. (2017). GC-MS analysis of clove (syzygium aromaticum) bud essential oil from Java and Manado. AIP Conference Proceedings, 1862: 030082.

25.    Retnowati, R., Rahman, M. F. and Yulia, D. (2014). Chemical constituents of the essential oils of white turmeric (Curcuma zedoaria (Christm.) Roscoe) from Indonesia and its toxicity toward artemia salina leach. Journal of Essential Oil Bearing Plants, 17 (3): 393-396.

26.    Jelen, H. and Gracka, A. (2015). Analysis of black pepper volatiles by solid phase micro extraction–gas chromatography: A comparison of terpenes profiles with hydrodistillation. Journal of Chromatography A, 1418: 200-209.

27.    O’Shea, S. K., Riesen, D. V. and Ross, L. L. (2012).  Isolation and analysis of essential oils from spices. Journal of Chemical Education, 89(5): 665–668.

28.    Bag, A. and Chattopadhyay, R. R. (2015). Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS ONE, 10(7): 1-17.

29.    Damašius, J., Venskutonis, P. R., Kaškonienėb, V. and Maruškab, A. (2014). Fast screening of the main phenolic acids with antioxidant properties in common spices using on-line HPLC/UV/DPPH radical scavenging assay. Analytical Methods, 6(8): 2774-2779.

30.    Gad, H. A. and Bouzabata, A. (2017). Application of chemometrics in quality control of turmeric (Curcuma longa) based on ultra-violet, Fourier transform-infrared and 1H NMR spectroscopy. Food Chemistry, 237: 857-864.

31.    Liu, H., Zeng, F. K., Wang, Q. H., Wu, H. S. and Tan, L. H. (2013). Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new genotypes. European Food Research and Technology, 237: 245–251.

32.    Junior, S. B., Tavares, A. M., Filho, J. T., Zini, C. A. and Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Research International, 48(1): 98-107.

33.    Golmohammad, F., Eikani, M. H., and Maymandi, H. M. (2012). Cinnamon bark volatile oils separation and determination using solid-phase extraction and gas chromatography. Procedia Engineering, 42: 247 – 260.

34.    Shao, Y. L., Marriott, P., Shellie, R. and Hugel, H. (2003). Solid-phase micro-extraction comprehensive two-dimensional gas chromatography of ginger (Zingiber officinale) volatiles. Flavour and Fragrance Journal, 18: 5-12.

35.    Aziz, K., Hayaloglu, A. A. and Atasoy, A. F. (2017). Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT - Food Science and Technology, 84: 842-850.

36.    McMaster, M. C., 2016. GC/MS: A Practical User’s Guide. John Wiley and Sons, New York. pp. 9-10

37.    Sabulal, B., Dan, M., John J, A., Kurup, R., Pradep, N.S., Valsama, R. K. and George, V. (2006). Caryophyllene-rich rhizome oil of Zingibernimmonii from South India: Chemical characterization and antimicrobial activity, Phytochemistry, 67: 2469-2473.

38.    Myszka, K., Schmidt, M. T., Majcher, M., Juzwa, W. and Czaczyk, K. (2017). β-Caryophyllene-rich pepper essential oils suppress spoilage activity of Pseudomonas fluorescens KM06 in fresh-cut lettuce. LWT - Food Science and Technology, 83:118-126.

39.    Montironi, I. D., Cariddi, L. N. and Reinoso, E. B. (2016). Evaluation of the antimicrobial efficacy of Minthostachysverticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Revista Argentina de Microbiología, 48(3): 210-216.

40.    Vandresen, F., Falzirolli, H., Batista, S. A. A., da Silva-Giardini, A. P. B., de Oliveira, D. N., Catharino, R. R., Ruiz, A. L. T. G., de Carvalho, J. E., Foglio, M. A. and da Silva, C.C. (2014). Novel R-(ţ)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. European Journal of Medicinal Chemistry, 79: 110-116.

41.    Chen, J. J., Lu, M., Jing, Y. and Dong, J. (2006). The synthesis of L-carvone and limonene derivatives with increased antiproliferative effect and activation of ERK pathway in prostate cancer cells. Bioorganic and Medicinal Chemistry, 14: 6539-6547.

42.    Gertsch, J., Leonti, M. and Raduner, S. (2008). β-caryophyllene is a dietary cannabinoid. Proceeding National Academy Science USA, 105(26): 9099-9104.

43.    Chavan, M. J., Wakte, P. S. and Shinde, D. B. (2010). Analgesic and anti-inflammatory activity of caryophyllene oxide from Annonasquamosa L. bark. Phytomedicine, 17:149-151.

44.    Burdock, G. (2010). Fenaroli’s Handbook of Flavor Ingredients. CRC Press, Florida, pp. 201-230.

45.    Teranishi, R., Wick, E. L., and Horstein, I. (1999).  Flavor chemistry thirty years of progress. Kluwer Academic/Plenum Publisher, New York. pp. 301-302. 

46.    Rahman, N., Xin, T. B., Kamilah, H. and Arifin, F. (2018). Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. Journal of Food Science and Technology, 55(1): 183-189.

47.    Martins, C., Doran, C., Silva, I. C., Miranda, C., Rueff, J. and Rodrigues, A. S. (2014). Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chemico-Biological Interactions, 218: 1-9.

48.    Siddique, S., Parveen, Z., Bareen, F. E., Chaudhary, M. N., Mazhar, S. and Nawaz, S. (2017). The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: A potential source of eugenol methyl ether. Industrial Crops and Products, 109: 912-917.

49.    Xu, H., Zheng, X., Yang, Y., Tian, J., Lu, Y., Tan, K., Heong, K. and Lu, Z. (2015). Methyl eugenol bioactivities as a new potential botanical insecticide against major insect pests and their natural enemies on rice (Orizasativa). Crop Protection, 72: 144-149.

50.    Souza, C. F., Baldissera, M. D., de L. Silva, L., Geihs, M. A. and Baldisserotto, B. (2018). Is monoterpene terpinen-4-ol the compound responsible for the anesthetic and antioxidant activity of melaleuca alternifolia essential oil (tea tree oil) in silver catfish? Aquaculture, 486: 217-233.

51.    Brilhante, R. S. N., Caetano, E. P., de Lima, R. A. C., de Farias Marques, F. J., Castel-Branco, D. C. M., de Melo, C. V. S., Guedes, G. M., de Olievera, J. S., de Camargo, Z. P., Moriera, J. L. B., Monteiro, A. J., Bandeira, T. P. G., Cordeiro, R., Rocha, M. F. G. and Sidrim, J. J. C. (2016). Terpinen-4-ol, tyrosol, and -lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 47: 917-924.

52.    Baldissera, M. D., Grando, T. H., Souza, C. F., Gressier, L. T., Stefani, L. M., da Silva, A. S. and Monteiro, S. G. (2016). In vitro and in vivo action of terpinen-4-ol, γ-terpinene, and α-terpinene against Trypanosomaevansi. Experimental Parasitology, 162: 43-48.

53.    Govindarajan, M., Mohan, R. and Giovanni, B. (2016). Delta-cadinene, calarene and delta-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Combatorial Chemistry and High Throughput, 19(7): 565-571.

54.    Muller, J., Quesada, A. C., Martinez, C.G. and Chiralt, A. (2017). Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starc. European Polymer Journal, 96: 316-325.

55.    Yeo, S. K. Ali, A. Y., Hayward, O. A., Turnham, D., Jackson, T., Bowen, I. D. and Clarkson, R. (2016). β-Bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphoraguidottii), exhibits cytotoxicity in breast cancer cell lines. Phototherapy Research, 30: 418-425.

56.    Rodrigues, A. C. B. C., Bomfim, L. M., Neves, S. P., Menezes, L. R. A., Dias, R. B., Soares, M. B. P., Prata, A. P. N., Rocha, C. A. G., Costa, E. V. and Berezza, D. P. (2015). Antitumor properties of the essential oil from the leaves of Duguetia gardneriana. Planta Medica, 81(10): 798-803.

57.    Govindarajan, M., Rajeswari, M., Hoti, S. L. and Benelli, G. (2016). Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culexquinque fasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Research in Veterinary Science, 104: 77-82.

58.    Hui, L. M., Zhao, G. D. and Zhao, J. J. (2015). Delta-cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. International Journal of Clinical and Experimental Pathology, 8(6): 6046-6056.

59.    Kundu, A., Saha, S., Walia, S., Shakil, N. A., Kumar, J. and Annapurna, K. (2013).  Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. Journal of Environmental Science and Health Part B: Pesticides Food Contaminants and Agricultural Wastes, 48(6): 516-522.

60.    Perez-Lopes, A., Cirio, A. T., Ravas-Galindo, V. M., Aranda, R. S. and de Torres, N.W. (2011). Activity against Streptococcus pneumoniae of the essential oil and delta-cadinene isolated from Schinus molle fruit. Journal of Essential Oil Research, 23 (5): 25-28.

61.    Chang, Z., Gao, M., Zhang, W., Song, L., Jia, Y. and Qin, Y. (2017). β-Elemene attenuates atherosclerosis in apolipoprotein e-deficient mice via restoring no levels and alleviating oxidative stress. Surgical Oncology, 26(4): 333-337.

62.    Ji-Chao, C., Wen-Li, D., Ren-Ren, B. A. I., He-Quan, Y., Xiao-Ming, W., Jing, S. and Jin-Yu, X. (2015). Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells. Chinese Journal of Natural Medicines, 13(8): 618-627.

63.    Qin, Y., Guo, Y., Wei, W., Wang, B., Jin, H., Sun, J., Qi, X., Ren, S. and Zuo, Y. (2012). Anti-tumor effect of β-elemene in murine hepatocellular carcinoma cell line H22 depends on the level of c-Met down regulation. Biomedicine and Preventive Nutrition, 2(2): 91-98.

64.    Sun, Y., Liu, G., Zhang, Y., Zhu, H., Ren, Y. and Shen, Y. (2009). Synthesis and in vitro anti-proliferative activity of β-elemene mono substituted derivatives in hela cells mediated through arrest of cell cycle at the G1 phase. Bioorganic and Medicinal Chemistry, 17(3): 1118-1124.

65.    Yazdani, D., Arzani, K., Mostofi, Y. and Shekarchi, M. (2011). α-farnesene and antioxidative enzyme systems in Asian pear (Pyrusserotina Rehd.) fruit. Postharvest Biology and Technology, 59(3): 227-231.

66.    Sokolova, A. S., Yarofaya, O. I, Semenova, M. D., Shtro, A. A., Orshanskaya, R., Zarubaev, V.V. and Salakhudinov, N. F. (2017).  Synthesis and in vitro study of novel borneol derivatives as potent inhibitors of the influenza a virus. Medical Chemistry Communication, 8(5): 960-963.

67.    Huo, T., Li, X. and Peng, C. (2017). Borneol enhances the antidepressant effects of asiaticoside by promoting its distribution into the brain. Neuroscience Letters, 646: 56-61.

68.    Shi, C., Zhao, X., Zonghui, L., Chen, X., Guo, N. and Rizeng, M. (2016). Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-l-lysine and citral, alone or in combination. Food & Nutrition Research, 60: 1-8.  

69.    Kim, D., Suh, Y., Lee, H. and Lee, Y. (2012).  Immune activation and antitumor response of ar-turmerone on P388D1 lymphoblast cell implanted tumors. International Journal of Molecular Medicine, 29: 386-392.

70.    Lee, H. S. (2006). Antimicrobial properties of turmeric (Curcuma longa L.) rhizome-derived ar-turmerone and curcumin. Food Science and Biotechnology, 15(4): 559-563.

71.    Lee, H. S. (2006). Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresource Technology, 97(12): 1372-1376.

72.    Fereira, L. A. F., Henriques, O. B., Andreoni, Vital, G. R. F., Campos, M. M. C., Habermehl, G. G. and de Moraes, V. L. G. (1992). Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (zingiberaceae). Toxicon, 30(10): 1211-1218.

73.    AlShelby, M. M., AlQahtani, F. S., Govindarajan, M., Gopinanth, K., Vijayan, P. and Benelli, G. (2017). Toxicity of ar-curcumene and epi-β-bisabolol from hedychiumlarsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicology and Environmental Safety, 137: 149-157.

 

 




Previous                    Content                    Next