Malaysian
Journal of Analytical Sciences Vol 23 No 6 (2019): 963 - 979
DOI:
10.17576/mjas-2019-2306-05
ANALYSIS OF VOLATILE
COMPOUNDS OF SPICES GROWN IN BANYUMAS DISTRICT, JAWA TENGAH, INDONESIA USING
SOLID PHASE MICROEXTRACTION-GAS CHROMATOGRAPHY MASS SPECTROMETRY
(Analisis Sebatian Meruap
bagi Rempah yang Tumbuh di Daerah Banyumas, Jawa Tengah, Indonesia Menggunakan Pengekstrakan
Mikro Fasa Pepejal-Kromatografi Gas Spektrometri Jisim)
Fajar Hardoyono1*,
KikinWindhani2, Herman Sambodo2, Hary Pudjianto2
1Laboratory of Physics, Faculty of Islamic Education
and Teaching Sciences,
Institut Agama Islam Negeri Purwokerto, Jalan
A. Yani 40 A, Purwokerto, Indonesia
2Department of Economics and Development Studies,
Faculty of Economics and Business,
Universitas Jenderal Soedirman, Jalan HR. Bunyamin
708, Purwokerto, Indonesia
*Corresponding author:
hardoyono@iainpurwokerto.ac.id
Received: 14 October 2018;
Accepted: 31 October 2019
Abstract
Indonesia is well-known
as one of high-quality spices producers in the world. Some of the spices
products from Indonesia show high economic value in the European market due to
their taste, flavour, and deliciousness. The quality of Indonesian spices was
contributed by specific volatile constituents identified in the essential oils.
This paper investigated major volatile constituents from seven types of spice
grown in Banyumas District, Jawa Tengah, i.e. pepper, nutmeg, cinnamon, clove,
chilli pepper, ginger, and turmeric. For experiment, 5 kg of each spice was
collected from the farm surrounding Banyumas District, Jawa Tengah. Specific
parts of these materials were selected. Pepper, nutmeg, and cloves used the
seeds; ginger and turmeric used the rhizomes; while cinnamon used the bark.
Each spice was prepared separately through these procedures: (1) slicing the
spices; (2) drying the spices in a drying cabinet for 24 hours at 40 °C; (3)
grinding the dried spices to powder for 5 minutes at 2500 rpm. For solid phase
microextraction-gas chromatography mass spectrometry (SPME-GC/MS) analysis, 200
mg of spice powder was put in a vial glass. The fibre extracted volatile
compounds of spice. Mass spectrometry detector identified the volatile
compounds based on molecularly mass of molecules. Data tabulation of seven
SPME-GC/MS chromatograms identified 69 volatile compounds in seven types of
spice. Major volatile compounds dominant in pepper were caryophyllene and
δ-limonene. Myristicin, methyl-eugenol, terpinene-4-ol, and asarone were
major compounds in nutmeg. Cinnamon and clove were dominated by cinnamaldehyde
and γ-muurolene, respectively. β-elemene and α-muurolene were
identified as major compounds in chilli pepper. Meanwhile, ginger and turmeric
were dominated by sesquiphellandrene and ar-tumerone, respectively. Some major
compounds identified in these spices were bioactive and efficacious for human
health as anticancer, antioxidant, and antitumor.
Keywords: Indonesian
spices, volatile compounds, solid phase microextraction-gas chromatography mass
spectrometry
Abstrak
Indonesia terkenal dengan produk rempah
berkualiti tinggi. Beberapa produk rempah dari Indonesia menunjukkan nilai
ekonomi yang tinggi di pasar Eropha kerana rasa, aroma dan kelazatannya.
Kualiti rempah Indonesia disebabkan oleh juzuk sebatian meruap yang
dikenalpasti di dalam minyak pati. Kajian ini menyiasat sebatian meruap utama
pada 7 jenis rempah Indonesia yang tumbuh di daerah Banyumas, iaitu lada hitam,
buah pala, kayu manis, cengkih, cili, halia dan kunyit. Untuk penelitian,
setiap 5 kg rempah diperoleh dari kebun di sekitar daerah Banyumas, Jawa
Tengah. Bahagian khusus dari bahan mentah dipilih untuk eksperimen. Untuk lada
hitam, buah pala, dan cengkih menggunakan biji, halia dan kunyit menggunakan
rhizom, manakala kayu manis menggunakan pelepah. Selanjutnya, setiap rempah
disiapkan untuk analisa pengekstrakan mikro fasa pepejal-kromatografi gas
spektrometri jisim (SPME-GCMS) melalui prosedur berikut: (1) Pengirisan rempah;
(2) pengeringan rempah selama 24 jam pada suhu 40 °C; (3) Penggilingan rempah
kering menjadi serbuk selama 5 minit pada kelajuan 2500 rpm. Bagi analisa
pengekstrakan mikro fasa pepejal-kromatografi gas spektrometri jisim SPME-GCMS,
10 mg serbuk rempah diletakkan di dalam vial kaca. Spektrometer jisim
mengenalpasti sebatian meruap berdasarkan berat molekul. Olahan data
kromatogram SPME-GCMS merekodkan 60 sebatian meruap pada 7 jenis rempah
Indonesia. Sebatian utama bagi lada hitam ialah kariofelena dan
δ-limonena. Miristisin, metil-eugenol, terpinen-4-ol dan asaron merupakan
sebatian utama bagi buah pala. Kayu manis dan cengkih, masing -masing
mengandungi sinamaldehid dan γ-muurolena. β-elemene dan
α-muurolene dikenalpasti sebagai sebatian utama bagi sampel cili.
Manakala, halia dan kunyit masing-masing mengandungi seskuifelandrena dan
ar-tumeron. Semua sebatian yang dikenalpasti pada rempah ini bersifat bioaktif
dan berkhasiat bagi kesihatan manusia sebagai antikanser, antioksidan, dan
antitumor.
Kata kunci: empah Indonesia, sebatian meruap,
pengekstrakan mikro fasa pepejal-kromatografi gas spektrometri jisim
References
1. Hannigan, T. A. (2015). Brief history of Indonesia,
sultans, spices, and tsunamis: the incredible story of southeast asia largest
nation. Tuttle Publishing, Vermont. pp: 50-55.
2. Drakeley, S. (2005). The history of Indonesia.
Greenwood Press, Connecticut. pp: 23-37.
3. Ricklefs, M.C. (2001). A history of modern Indonesia
since c. 1200. Palgrave, London. pp:
26-30.
4. Gerard, F. and Ruf, F. (2001). Agriculture in crisis:
People, Commodities and Natural Resources in Indonesia, 1996-2000. Curzon
Press, Richmond. pp.384-395
5. Ardiyanti, S.T. (2018). Potency of Indonesian Spices
Exported Products. Leaflet Publishing of Agency for the Assessment and
Development of Trade, Ministry of Trade Republic of Indonesia, 2018. Retrieved
from http://bppp.kemendag.go.id/leaflet_artikel_perdagangan/view/MjI%3D. [Accessed online 26 January 2018].
6. CBI Ministry of Foreign Affair (2018). Market Insight
for Indonesian Spices. Tailored market intelligence: EU market insights for
Indonesian spices). Retrieved from https://www.cbi.eu/ sites/default/files/ market_information/researches/tailored-information-indonesian-spices-eu-market-insights-indonesia-europe-spices-herbs-2013.pdf.
[Accessed online 26 January 2018].
7. Raghavan, S. (2007). Handbook of spices, seasoning,
and flavorings. CRC Press, New York. pp: 36-38.
8. Peter, K.V. (2004). Handbook of herbs and spices. CRC
Press, New York. pp: 14-15.
9. Yu, G.-W., Cheng, Q., Nie, J., Wang, P., Wang, X.-J.,
Li, Z.-G. and Lee, M.-R. (2001). DES-based microwave hydro-distillation coupled
with GC-MS for analysis of essential oil from black pepper (Piper nigrum) and white pepper. Analytical Methods, 9(48): 6777-6784.
10. Marques, A. M., Fingolo, C. E. and Kaplan, M. A. C.
(2017). HSCCC separation and enantiomeric distribution of key volatile
constituents of Piper claussenianum
(Miq.) C. DC. (Piperaceae). Food and Chemical Toxicology, 109:
1111-1117.
11. Muchtaridi, Subarnas, A., Apriantono, A. and Mustarichie,
R. (2010). Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit
locomotor activity in mice. International
Journal of Molecular Sciences, 11: 4771-4781.
12. Verma, R. S., Padalia, R. C. and Chauhan, A. (2012).
Fragrant volatile oil composition of nutmeg geranium (Pelargonium fragrans Willd.) from India. Natural Product Research, 27(8): 761-766.
13. Malsawmtluangia, L., Nautiyala, B. P., Hazarikaa, T.,
Chauhan, R. S. and Tavac, A. (2016). Essential oil composition of bark and
leaves of Cinammoum verum Bertch from
Mizoram, North East India. Journal of
Essential Oil Research, 28 (6): 551-556.
14. Sandner, D., Krings, U. and Berger, R. G. (2017).
Volatiles from Cinnamomum cassia
buds. Zeitschrift fur Naturforschung,
C. 73(1): 67-75.
15. Kasai, H., Shirao, M. and Ikegami-Kawai, M. (2016). Analysis
of volatile compounds of clove (syzygium
aromaticum) buds as influenced by growth phase and investigation of
antioxidant activity of clove extracts. Flavour
Fragrance Journal, 31: 178-184.
16. El-Mesallamy, L. A. M. D., El-Gerby, M., Abd El Azim,
M. H. M, and Awad, A. (2012). Antioxidant, antimicrobial activities and
volatile constituents of clove flower buds oil. Journal of Essential Oil Bearing Plants, 15(6), 900-907.
17. Patel, K., Ruiz, C., Calderon, R., Marcelo, M. and
Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian
chili pepper using solid phase microextraction–gas chromatography mass
spectrometry (SPME–GCMS). Food Research
International, 89(1): 471-475.
18. Gurnani, N., Gupta, M., Mehta, D. and Mehta, B. K.
(2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant
activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal
of Taibah University for Science, 10: 462–470.
19. Toure, A. and Xiaomin, Z. (2007). Gas chromatographic
analysis of volatile components of Guinean and Chinese ginger oils (Zingiber officinale) extracted
by steam distillation. Journal of Agronomy, 6: 350-355.
20. Mesomo, M. C., Corazza, M. L., Ndiaye, P. M. and
Santa, O. R. D. (2013). Supercritical CO2 extracts and essential oil
of ginger (Zingiber officinale R.):
Chemical composition and antibacterial activity. The Journal of Supercritical Fluids, 80: 44-49.
21. Tyagi, A. K., Pasad, S., Yuan, W., Li, S. and
Aggarwal, B. B. (2015). Identification of a novel compound
(β-sesquiphellandrene) from turmeric (Curcuma
longa) with anticancer potential: Comparison with curcumin. Investigational New Drugs, 33(6),
1175:1186.
22. Xiang, H., Zhang, L., Yang, Z., Chen, F., Zheng, X.
and Liu, X. (2017). Chemical compositions, anti-oxidative, antimicrobial,
anti-inflammatory and antitumor activities of Curcuma aromatic Salisb. essential
oils. Industrial Crops and Products, 108: 6-16.
23. Dupuy, N., Molinet, J., Mehl, F., Nanlohy, F., Le
Dreau, Y. and Kister, J. (2013). Chemometric analysis of mid infrared and gas
chromatography data of Indonesian nutmeg essential oils. Industrial Crops and Products, 43: 596–601.
24. Amelia, B., Saepudin, E., Cahyana, A. H., Rahayu, D. U.,
Sulistiyoningrum, A. S. and Haib, J. (2017). GC-MS analysis of clove (syzygium aromaticum) bud essential oil
from Java and Manado. AIP Conference
Proceedings, 1862: 030082.
25. Retnowati, R., Rahman, M. F. and Yulia, D. (2014). Chemical
constituents of the essential oils of white turmeric (Curcuma zedoaria (Christm.) Roscoe) from Indonesia and its toxicity
toward artemia salina leach. Journal of Essential Oil Bearing Plants,
17 (3): 393-396.
26. Jelen, H. and Gracka, A. (2015). Analysis of black
pepper volatiles by solid phase micro extraction–gas chromatography: A
comparison of terpenes profiles with hydrodistillation. Journal of Chromatography A, 1418: 200-209.
27. O’Shea, S. K., Riesen, D. V. and Ross, L. L.
(2012). Isolation and analysis of
essential oils from spices. Journal of Chemical
Education, 89(5): 665–668.
28. Bag, A. and Chattopadhyay, R. R. (2015). Evaluation of
synergistic antibacterial and antioxidant efficacy of essential oils of spices
and herbs in combination. PLoS ONE,
10(7): 1-17.
29. Damašius, J., Venskutonis, P. R., Kaškonienėb, V.
and Maruškab, A. (2014). Fast screening of the main phenolic acids with
antioxidant properties in common spices using on-line HPLC/UV/DPPH radical
scavenging assay. Analytical Methods,
6(8): 2774-2779.
30. Gad, H. A. and Bouzabata, A. (2017). Application of
chemometrics in quality control of turmeric (Curcuma longa) based on ultra-violet, Fourier transform-infrared
and 1H NMR spectroscopy. Food
Chemistry, 237: 857-864.
31. Liu, H., Zeng, F. K., Wang, Q. H., Wu, H. S. and Tan,
L. H. (2013). Studies on the chemical and flavor qualities of white pepper (Piper nigrum L.) derived from five new
genotypes. European Food Research and Technology,
237: 245–251.
32. Junior, S. B., Tavares, A. M., Filho, J. T., Zini, C. A.
and Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli
peppers (Capsicum spp.) at two stages
of maturity by solid phase micro-extraction and gas chromatography-mass
spectrometry. Food Research International,
48(1): 98-107.
33. Golmohammad, F., Eikani, M. H., and Maymandi, H. M.
(2012). Cinnamon bark volatile oils separation and determination using
solid-phase extraction and gas chromatography. Procedia Engineering, 42: 247 – 260.
34. Shao, Y. L., Marriott, P., Shellie, R. and Hugel, H.
(2003). Solid-phase micro-extraction comprehensive two-dimensional gas
chromatography of ginger (Zingiber
officinale) volatiles. Flavour and
Fragrance Journal, 18: 5-12.
35. Aziz, K., Hayaloglu, A. A. and Atasoy, A. F. (2017).
Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and
isot). LWT - Food Science and Technology,
84: 842-850.
36. McMaster, M. C., 2016. GC/MS: A Practical User’s Guide. John Wiley and Sons, New York.
pp. 9-10
37. Sabulal, B., Dan, M., John J, A., Kurup, R., Pradep,
N.S., Valsama, R. K. and George, V. (2006). Caryophyllene-rich rhizome oil of Zingibernimmonii from South India:
Chemical characterization and antimicrobial activity, Phytochemistry, 67: 2469-2473.
38. Myszka, K., Schmidt, M. T., Majcher, M., Juzwa, W. and
Czaczyk, K. (2017). β-Caryophyllene-rich pepper essential oils suppress
spoilage activity of Pseudomonas
fluorescens KM06 in fresh-cut lettuce. LWT
- Food Science and Technology, 83:118-126.
39. Montironi, I. D., Cariddi, L. N. and Reinoso, E. B.
(2016). Evaluation of the antimicrobial efficacy of Minthostachysverticillata essential oil and limonene against Streptococcus uberis strains isolated
from bovine mastitis. Revista Argentina
de Microbiología, 48(3): 210-216.
40. Vandresen, F., Falzirolli, H., Batista, S. A. A., da
Silva-Giardini, A. P. B., de Oliveira, D. N., Catharino, R. R., Ruiz, A. L. T. G.,
de Carvalho, J. E., Foglio, M. A. and da Silva, C.C. (2014). Novel
R-(ţ)-limonene-based thiosemicarbazones and their antitumor activity against
human tumor cell lines. European Journal
of Medicinal Chemistry, 79: 110-116.
41. Chen, J. J., Lu, M., Jing, Y. and Dong, J. (2006). The
synthesis of L-carvone and limonene derivatives with increased
antiproliferative effect and activation of ERK pathway in prostate cancer
cells. Bioorganic and Medicinal Chemistry,
14: 6539-6547.
42. Gertsch, J., Leonti, M. and Raduner, S. (2008).
β-caryophyllene is a dietary cannabinoid. Proceeding National Academy Science USA, 105(26): 9099-9104.
43. Chavan, M. J., Wakte, P. S. and Shinde, D. B. (2010).
Analgesic and anti-inflammatory activity of caryophyllene oxide from Annonasquamosa L. bark. Phytomedicine, 17:149-151.
44. Burdock, G. (2010).
Fenaroli’s Handbook of Flavor Ingredients. CRC Press, Florida, pp. 201-230.
45. Teranishi, R., Wick, E. L., and Horstein, I.
(1999). Flavor chemistry thirty years of
progress. Kluwer Academic/Plenum Publisher, New York. pp. 301-302.
46. Rahman, N., Xin, T. B., Kamilah, H. and Arifin, F.
(2018). Effects of osmotic dehydration treatment on volatile compound
(Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. Journal
of Food Science and Technology, 55(1): 183-189.
47. Martins, C., Doran, C., Silva, I. C., Miranda, C.,
Rueff, J. and Rodrigues, A. S. (2014). Myristicin from nutmeg induces apoptosis
via the mitochondrial pathway and
down regulates genes of the DNA damage response pathways in human leukaemia
K562 cells. Chemico-Biological
Interactions, 218: 1-9.
48. Siddique, S., Parveen, Z., Bareen, F. E., Chaudhary,
M. N., Mazhar, S. and Nawaz, S. (2017). The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from
Pakistan: A potential source of eugenol methyl ether. Industrial Crops and Products, 109: 912-917.
49. Xu, H., Zheng, X., Yang, Y., Tian, J., Lu, Y., Tan,
K., Heong, K. and Lu, Z. (2015). Methyl eugenol bioactivities as a new potential
botanical insecticide against major insect pests and their natural enemies on
rice (Orizasativa). Crop Protection,
72: 144-149.
50. Souza, C. F., Baldissera, M. D., de L. Silva, L.,
Geihs, M. A. and Baldisserotto, B. (2018). Is monoterpene terpinen-4-ol the
compound responsible for the anesthetic and antioxidant activity of melaleuca alternifolia essential oil
(tea tree oil) in silver catfish? Aquaculture,
486: 217-233.
51. Brilhante, R. S. N., Caetano, E. P., de Lima, R. A. C.,
de Farias Marques, F. J., Castel-Branco, D. C. M., de Melo, C. V. S., Guedes,
G. M., de Olievera, J. S., de Camargo, Z. P., Moriera, J. L. B., Monteiro, A. J.,
Bandeira, T. P. G., Cordeiro, R., Rocha, M. F. G. and Sidrim, J. J. C. (2016).
Terpinen-4-ol, tyrosol, and -lapachone as potential antifungals against
dimorphic fungi. Brazilian Journal of
Microbiology, 47: 917-924.
52. Baldissera, M. D., Grando, T. H., Souza, C. F.,
Gressier, L. T., Stefani, L. M., da Silva, A. S. and Monteiro, S. G. (2016). In
vitro and in vivo action of terpinen-4-ol, γ-terpinene, and
α-terpinene against Trypanosomaevansi.
Experimental Parasitology, 162:
43-48.
53. Govindarajan, M., Mohan, R. and Giovanni, B. (2016).
Delta-cadinene, calarene and delta-4-carene from Kadsura heteroclita essential oil as novel larvicides against
malaria, dengue and filariasis mosquitoes. Combatorial
Chemistry and High Throughput, 19(7): 565-571.
54. Muller, J., Quesada, A. C., Martinez, C.G. and
Chiralt, A. (2017). Antimicrobial properties and release of cinnamaldehyde in
bilayer films based on polylactic acid (PLA) and starc. European Polymer Journal, 96: 316-325.
55. Yeo, S. K. Ali, A. Y., Hayward, O. A., Turnham, D.,
Jackson, T., Bowen, I. D. and Clarkson, R. (2016). β-Bisabolene, a
sesquiterpene from the essential oil extract of opoponax (Commiphoraguidottii), exhibits cytotoxicity in breast cancer cell
lines. Phototherapy Research, 30: 418-425.
56. Rodrigues, A. C. B. C., Bomfim, L. M., Neves, S. P.,
Menezes, L. R. A., Dias, R. B., Soares, M. B. P., Prata, A. P. N., Rocha, C. A.
G., Costa, E. V. and Berezza, D. P. (2015). Antitumor properties of the
essential oil from the leaves of Duguetia
gardneriana. Planta Medica, 81(10): 798-803.
57. Govindarajan, M., Rajeswari, M., Hoti, S. L. and
Benelli, G. (2016). Larvicidal potential of carvacrol and terpinen-4-ol from
the essential oil of Origanum vulgare
(Lamiaceae) against Anopheles stephensi,
Anopheles subpictus, Culexquinque fasciatus and Culex tritaeniorhynchus (Diptera:
Culicidae). Research in Veterinary
Science, 104: 77-82.
58. Hui, L. M., Zhao, G. D. and Zhao, J. J. (2015).
Delta-cadinene inhibits the growth of ovarian cancer cells via
caspase-dependent apoptosis and cell cycle arrest. International Journal of Clinical and Experimental Pathology, 8(6):
6046-6056.
59. Kundu, A., Saha, S., Walia, S., Shakil, N. A., Kumar,
J. and Annapurna, K. (2013). Cadinene
sesquiterpenes from Eupatorium
adenophorum and their antifungal activity. Journal of Environmental Science and Health Part B: Pesticides Food
Contaminants and Agricultural Wastes, 48(6): 516-522.
60. Perez-Lopes, A., Cirio, A. T., Ravas-Galindo, V. M.,
Aranda, R. S. and de Torres, N.W. (2011). Activity against Streptococcus pneumoniae of the essential oil and delta-cadinene
isolated from Schinus molle fruit. Journal of Essential Oil Research, 23
(5): 25-28.
61. Chang, Z., Gao, M., Zhang, W., Song, L., Jia, Y. and
Qin, Y. (2017). β-Elemene attenuates atherosclerosis in apolipoprotein
e-deficient mice via restoring no levels and alleviating oxidative stress. Surgical Oncology, 26(4): 333-337.
62. Ji-Chao, C., Wen-Li, D., Ren-Ren, B. A. I., He-Quan,
Y., Xiao-Ming, W., Jing, S. and Jin-Yu, X. (2015). Synthesis of
13-β-elemene ester derivatives and evaluation of their antioxidant
activity in human umbilical vein endothelial cells. Chinese Journal of Natural Medicines, 13(8): 618-627.
63. Qin, Y., Guo, Y., Wei, W., Wang, B., Jin, H., Sun, J.,
Qi, X., Ren, S. and Zuo, Y. (2012). Anti-tumor effect of β-elemene in
murine hepatocellular carcinoma cell line H22 depends on the level of c-Met
down regulation. Biomedicine and
Preventive Nutrition, 2(2): 91-98.
64. Sun, Y., Liu, G., Zhang, Y., Zhu, H., Ren, Y. and
Shen, Y. (2009). Synthesis and in vitro anti-proliferative activity of
β-elemene mono substituted derivatives in hela cells mediated through
arrest of cell cycle at the G1 phase. Bioorganic
and Medicinal Chemistry, 17(3): 1118-1124.
65. Yazdani, D., Arzani, K., Mostofi, Y. and Shekarchi, M.
(2011). α-farnesene and antioxidative enzyme systems in Asian pear (Pyrusserotina Rehd.) fruit. Postharvest Biology and Technology,
59(3): 227-231.
66. Sokolova, A. S., Yarofaya, O. I, Semenova, M. D.,
Shtro, A. A., Orshanskaya, R., Zarubaev, V.V. and Salakhudinov, N. F. (2017). Synthesis and in vitro study of novel borneol
derivatives as potent inhibitors of the influenza a virus. Medical Chemistry Communication, 8(5): 960-963.
67. Huo, T., Li, X. and Peng, C. (2017). Borneol enhances
the antidepressant effects of asiaticoside by promoting its distribution into
the brain. Neuroscience Letters, 646:
56-61.
68. Shi, C., Zhao, X., Zonghui, L., Chen, X., Guo, N. and Rizeng,
M. (2016). Antimicrobial, antioxidant, and antitumor activity of
epsilon-poly-l-lysine and citral, alone or in combination. Food & Nutrition Research, 60: 1-8.
69. Kim, D., Suh, Y., Lee, H. and Lee, Y. (2012). Immune activation and antitumor response of
ar-turmerone on P388D1 lymphoblast cell implanted tumors. International Journal of Molecular Medicine, 29: 386-392.
70. Lee, H. S. (2006). Antimicrobial properties of
turmeric (Curcuma longa L.)
rhizome-derived ar-turmerone and curcumin. Food
Science and Biotechnology, 15(4): 559-563.
71. Lee, H. S. (2006). Antiplatelet property of Curcuma longa L. rhizome-derived
ar-turmerone. Bioresource Technology,
97(12): 1372-1376.
72. Fereira, L. A. F., Henriques, O. B., Andreoni, Vital,
G. R. F., Campos, M. M. C., Habermehl, G. G. and de Moraes, V. L. G. (1992). Antivenom
and biological effects of ar-turmerone isolated from Curcuma longa (zingiberaceae). Toxicon,
30(10): 1211-1218.
73. AlShelby, M. M., AlQahtani, F. S., Govindarajan, M.,
Gopinanth, K., Vijayan, P. and Benelli, G. (2017). Toxicity of ar-curcumene and
epi-β-bisabolol from hedychiumlarsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis
encephalitis mosquito vectors. Ecotoxicology and Environmental Safety,
137: 149-157.