Malaysian
Journal of Analytical Sciences Vol 23 No 3 (2019): 548 - 560
DOI:
10.17576/mjas-2019-2303-19
CUTICULAR
HYDROCARBONS OF PUPAL CASES OF Chrysomya megacephala (FABRICIUS) AND ITS
POSSIBLE USE FOR ESTIMATING POSTMORTEM INTERVAL
(Hidrokarbon
Kutikel Kepompong Chrysomya megacephala dan Kegunaannya untuk Menganggar
Sela Masa Kematian)
Nurul
Nadhirah Nasir1, Mohamad Afiq Mohamed Huri1, Reena Abd.
Rashid2, Jaafariah
Jaafar1, Naji
Arafat Mahat1*
1Department of Chemistry, Faculty of Science,
Universiti Teknologi Malaysia, 81310 UTM Johor
Bahru, Johor, Malaysia
2Chemistry (Forensic Analysis) Programme, Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
*Corresponding
author: naji@kimia.fs.utm.my
Received: 25 October 2017; Accepted: 22 January 2019
Abstract
Pupal cases of Chrysomya megacephala are
commonly
found at death scenes; however, its utilization for forensic investigation remains nascent.
Although the use of cuticular hydrocarbons (CHCs) for
estimating the age of pupal cases
has been reported, they were either laboratory-controlled
experiments
or
in environmental conditions
peculiar to Malaysia.
Hence, this
present research examined the CHCs
in
the pupal cases
of
C. megacephala exposed to the natural
weathering in Malaysia provides
empirical
evidence for its age estimation.
While
confirmation of the identity of CHCs was done using gas chromatography-mass
spectrometry,
meanwhile gas chromatography-flame ionization
detector was
used for quantifying the concentrations. The
hexane extract of the pupal cases of C. megacephala contained a mixture of odd-numbered high molecular
weight aliphatic (heptacosane (n-C27) and nonacosane (n-C29)), and branched alkanes (tetradecane, 2,6,20-trimethyl- and octadecane, 3-ethyl-5-(2-ethylbutyl)). Significant decrease (p <0.05) in the concentrations of
n-C27
and n-C29 was observed,
with the pattern
being highly correlated (r > -0.926) with that of subsequent weathering intervals. Such findings had enabled formulation of credible mathematical algorithms for relating the
concentrations of n-C27 and n-C29 in the pupal cases of C. megacephala versus the
natural weathering intervals for its age estimation in Malaysia.
Keywords: forensic science, cuticular hydrocarbon, Chrysomya megacephala,
postmorterm interval, Malaysia
Abstrak
Kepompong Chrysomya megacephala
biasa dijumpai di
tempat
penemuan kematian; namun, penggunaanya
dalam penyiasatan forensik masih baharu.
Meskipun penggunaan kutikel hidrokarbon
(CHC) dalam menganggar umur kepompong telah dilaporkan, ia sama
ada dijalankan dalam ujikaji makmal terkawal ataupun
dalam keadaan persekitaran yang janggal untuk Malaysia. Justeru, kajian
ini yang menyelidik CHC dalam kepompong C.
megacephala terdedah kepada proses luluhawa semulajadi di Malaysia memberikan bukti
empirikal dalam menganggar usianya.
Pengesahan identiti CHC dilakukan dengan
menggunakan kromatografi gas-spektrometer jisim, manakala kromatografi gas-pengesan
nyalaan
pengionan digunakan untuk menentukan
kepekatannya.
Ekstrak heksana kepompong C. megacephala mengandungi campuran alifatik
molekul berat
yang
bernombor ganjil (heptakosana (n-C27) dan nonakosana (n-C29)) dan
alkana bercabang (tetradekana, 2,6,20-trimetil- dan oktadekana, 3-etil-5-(2-etilbutil)). Penurunan signifikan (p <0.05) dalam kepekatan n-C27 dan n-C29 dapat diperhatikan, dengan corak penurunan berkorelasi tinggi
(r> -0.926) dengan sela masa luluhawa.
Penemuan tersebut membolehkan perumusan
algoritma matematik yang mapan bagi mengaitkan kepekatan n-C27 dan
n-C29 dalam kepompong C. megacephala
dengan sela
masa luluhawa semula jadi untuk menganggar
usianya di Malaysia.
Kata kunci: sains forensik, hidrokarbon kutikel, Chrysomya megacephala, sela masa kematian, Malaysia
References
1. Gennard, D. (2012). Forensic entomology: An
introduction. Wiley Press.
2. Mahat, N. A., Yin,
C. L., and Jayaprakash, P. T. (2014).
Influence of paraquat on Chrysomya
megacephala (Fabricius) (Diptera: Calliphoridae) infesting minced-beef
substrates in Kelantan, Malaysia. Journal of Forensic Sciences, 59(2):
529-532.
3. Kavitha, R., Nazni,
W. A., Tan, T. C., Lee, H. L., and Azirun, M. S. (2013). Review of forensically important
entomological specimens collected from human cadavers in Malaysia (2005-2010). Journal
of Forensic and Legal Medicine, 20(5): 480-482.
4. Mahat, N. A. and
Jayaprakash, P. T. (2013). Forensic entomology in Malaysia: A review. Malaysian
Journal of Forensic Sciences, 4(1): 1-6.
5. Lee, H. L. (1989).
Recovery of forensically important entomological specimens from human cadavers
in Malaysia-an update. Malaysian Journal of Pathology, 11: 33-36.
6. Mahat, N. A.,
Zafarina, Z., and Jayaprakash, P. T. (2009). Influence of rain and malathion on
the oviposition and development of blowflies (Diptera: Calliphoridae) infesting
rabbit carcasses in Kelantan, Malaysia.
Forensic Science International, 192(1-3):
19-28.
7. Zhu, G. H., Xu, X. H.,
Yu, X. J., Zhang, Y., and Wang, J. F.
(2007). Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic
Sci International, 169(1): 1-5.
8. Zhu, G.-H., Yu,
X.-J., Xie, L.-X., Luo, H., Wang, D., Lv, J.-Y. and Xu, X.-H. (2013). Time of death revealed by
hydrocarbons of empty puparia of Chrysomya
megacephala (Fabricius) (Diptera: Calliphoridae): A field experiment. PLoS
ONE, 8(9): e73043.
9. Zhu, G. H., Ye, G. Y.,
Hu, C., Xu, X. H. and Li, K. (2006).
Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Medical
and Veterinary Entomology, 20(4): 438-44.
10. Malaysian
Meteorological Department (2015). Retrieved from the Malaysia Meteorological
Department website: http://www.met.gov.my [Date access 20 June 2015].
11. Omar, B., Marwi, M.,
Oothuman, P., and Othman, H. (1994).
Observations on the behaviour of immatures and adults of some Malaysian
sarcosaprophagous flies. Tropical Biomedicine, 11: 149-149.
12. Chau, J. F.,
Bagtzoglou, A. C., and Willig, M. R.
(2011). The effect of soil texture on richness and diversity of
bacterial communities. Environmental Forensics, 12(4): 333-341.
13. Munro, B. H. (2005).
Statistical methods for health care research. Lippincott Williams &
Wilkins.
14. Miuc, A., Voncina,
E. and Lecnik, U. (2015). Composition of
organic compounds adsorbed on PM10 in the air above maribor. Acta
Chimica Slovenia, 62(4): 834-848.
15. USFDA (2001). Guidance for industry: Bioanalytical
method validation. U.S. Department of Health and Human Services
Food and Drug Administration- Center for Drug Evaluation and Research
(CDER)-Center for Veterinary Medicine (CVM).
16. Tiwari, G. and
Tiwari, R. (2010). Bioanalytical method
validation: An updated review. Pharmaceutical Methods, 1(1): 25-38.
17. Serrano, A.,
Gallego, M., González, J. L., and Tejada, M.
(2008). Natural attenuation of diesel aliphatic hydrocarbons in
contaminated agricultural soil. Environmental Pollution, 151(3):
494-502.
18. Sharma, R., Kumar
Garg, R., and Gaur, J. R. (2015).
Various methods for the estimation of the post mortem interval from
Calliphoridae: A review. Egyptian Journal of Forensic Sciences, 5(1):
1-12.
19. Ye, G., Li, K., Zhu,
J., Zhu, G., and Hu, C. (2007).
Cuticular hydrocarbon composition in pupal exuviae for taxonomic
differentiation of six necrophagous flies.
J Med Entomol. 44(3): p. 450-456.
20. Frere, B., Suchaud,
F., Bernier, G., Cottin, F., Vincent, B., Dourel, L., Lelong, A. and Arpino,
P. (2014). GC-MS analysis of cuticular
lipids in recent and older scavenger insect puparia. An approach to estimate
the postmortem interval (PMI). Anal Bioanalytical Chemistry, 406(4):
1081-1088.
21. Wagner, D., Tissot,
M. and Gordon, D. (2001). Task-related
environment alters the cuticular hydrocarbon composition of harvester ants. Journal
Chemical Ecology, 27(9): 1805-1819.
22. Savarit, F. and
Ferveur, J. F. (2002). Temperature affects the ontogeny of sexually dimorphic
cuticular hydrocarbons in Drosophila melanogaster. Journal Expimental Biology,
205(20): 3241-3249.
23. Ingleby, F. C. (2015).
Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects,
6(3): 732-742.
24. Ingleby, F. C.,
Hosken, D. J., Flowers, K., Hawkes, M. F., Lane, S. M., Rapkin, J., House, C. M.,
Sharma, M. D. and and Hunt, J. (2014).
Environmental heterogeneity, multivariate sexual selection and genetic
constraints on cuticular hydrocarbons in Drosophila simulans. Journal
of Evolution Biology, 27(4): 700-713.
25. Trewin (2014). The climates
of the tropics and how they are changing. In Harding, S., McComiskie, R.,
Wolff, M., Trewin, D., and Hunter, S. (Eds.). State of the Tropics 2014 Report
(pp. 39-51). Australia, James Cook University.
26. Pechal, J. L.,
Moore, H., Drijfhout, F. and Benbow, M. E.
(2014). Hydrocarbon profiles throughout adult Calliphoridae aging: A
promising tool for forensic entomology.
Forensic Sci International, 245:
65-71.
27. Sarkar, N.,
Mukherjee, A. and Barik, A. (2013).
Long-chain alkanes: Allelochemicals for host location by the insect pest, Epilachna dodecastigma (Coleoptera:
Coccinellidae). Applied Entomology and Zoology, 48(2): 171-179.
28. Bettelheim, F. A.,
Brown, W. H., Campbell, M. K. and Farrell, S. O. (2009). Introduction to
general, organic and biochemistry. Cengage Learning Publication.
29. Hejazi, R. F. and
Husain, T. (2004). Landfarm performance
under arid conditions. 2. Evaluation of parameters. Environmental Science
Technology, 38(8): 2457-2469.
30. Sharma, A., Kumar,
P. and Rehman, M. B. (2014).
Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: A laboratory
scale study. International Journal of Environmental Bioremediation &
Biodegradation, 2(4): 202-212.
31. Wang, Z., Fingas,
M., Lambert, P., Zeng, G., Yang, C. and Hollebone, B. (2004). Characterization and identification
of the Detroit River mystery oil spill.
Journal of Chromatography A, 1038(1-2):
201-214.
32. Dibble, J. T. and
Bartha, R. (1979). Effect of
environmental parameters on the biodegradation of oil sludge. Applied
and Environmental Microbiology, 37(4): 729-739.
33. Berthe-Corti, L. and
Fetzner, S. (2002). Bacterial metabolism of n-alkanes and ammonia under oxic,
suboxic and anoxic conditions. Acta Biotechnologica, 22(3-4): 299-336.