Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 548 - 560

DOI: 10.17576/mjas-2019-2303-19

 

 

 

CUTICULAR HYDROCARBONS OF PUPAL CASES OF Chrysomya megacephala (FABRICIUS) AND ITS POSSIBLE USE FOR ESTIMATING POSTMORTEM INTERVAL

 

(Hidrokarbon Kutikel Kepompong Chrysomya megacephala dan Kegunaannya untuk Menganggar Sela Masa Kematian)

 

Nurul Nadhirah Nasir1, Mohamad Afiq Mohamed Huri1, Reena Abd. Rashid2,  Jaafariah Jaafar1, Naji Arafat Mahat1*

 

1Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Chemistry (Forensic Analysis) Programme, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  naji@kimia.fs.utm.my

Received: 25 October 2017; Accepted: 22 January 2019

 

 

Abstract

Pupal cases of Chrysomya megacephala are commonly found at death scenes; however, its utilization for forensic investigation remains nascent. Although the use of cuticular hydrocarbons (CHCs) for estimating the age of pupal cases has been reported, they were either laboratory-controlled experiments or in environmental conditions peculiar to Malaysia. Hence, this present research examined the CHCs in the pupal cases of C. megacephala exposed to the natural weathering in Malaysia provides empirical evidence for its age estimation. While confirmation of the identity of CHCs was done using gas chromatography-mass spectrometry, meanwhile gas chromatography-flame ionization detector was used for quantifying the concentrations. The hexane extract of the pupal cases of C. megacephala contained a mixture of odd-numbered high molecular weight aliphatic (heptacosane (n-C27) and nonacosane (n-C29)), and branched alkanes (tetradecane, 2,6,20-trimethyl- and octadecane, 3-ethyl-5-(2-ethylbutyl)).  Significant decrease (p <0.05) in the concentrations of n-C27 and n-C29 was observed, with the pattern being highly correlated (r > -0.926) with that of subsequent weathering intervals. Such findings had enabled formulation of credible mathematical algorithms for relating the concentrations of n-C27 and n-C29 in the pupal cases of C. megacephala versus the natural weathering intervals for its age estimation in Malaysia.

 

Keywords:  forensic science, cuticular hydrocarbon, Chrysomya megacephala, postmorterm interval, Malaysia


Abstrak

Kepompong Chrysomya megacephala biasa dijumpai di tempat penemuan kematian; namun, penggunaanya dalam  penyiasatan  forensik masih baharu. Meskipun penggunaan kutikel hidrokarbon (CHC) dalam menganggar umur kepompong telah dilaporkan, ia sama ada dijalankan dalam ujikaji makmal terkawal ataupun dalam keadaan persekitaran yang janggal untuk Malaysia.  Justeru, kajian ini yang menyelidik CHC dalam kepompong C. megacephala terdedah kepada proses luluhawa semulajadi di Malaysia memberikan bukti empirikal dalam menganggar usianya. Pengesahan identiti CHC dilakukan dengan menggunakan kromatografi gas-spektrometer jisim, manakala kromatografi gas-pengesan nyalaan pengionan digunakan untuk menentukan kepekatannya. Ekstrak heksana kepompong C. megacephala mengandungi campuran alifatik molekul berat yang bernombor ganjil (heptakosana (n-C27) dan nonakosana (n-C29)) dan alkana bercabang (tetradekana, 2,6,20-trimetil- dan oktadekana, 3-etil-5-(2-etilbutil)). Penurunan signifikan (p <0.05) dalam kepekatan n-C27 dan n-C29 dapat diperhatikan, dengan corak penurunan berkorelasi tinggi (r> -0.926) dengan sela masa luluhawa. Penemuan tersebut membolehkan perumusan algoritma matematik yang mapan bagi mengaitkan kepekatan n-C27 dan n-C29 dalam kepompong C. megacephala dengan sela masa luluhawa semula jadi untuk menganggar usianya di Malaysia.

 

Kata kunci:  sains forensik, hidrokarbon kutikel, Chrysomya megacephala, sela masa kematian, Malaysia

 

References

1.     Gennard, D. (2012). Forensic entomology: An introduction. Wiley Press.

2.     Mahat, N. A., Yin, C. L., and Jayaprakash, P. T.  (2014). Influence of paraquat on Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) infesting minced-beef substrates in Kelantan, Malaysia. Journal of Forensic Sciences, 59(2): 529-532.

3.     Kavitha, R., Nazni, W. A., Tan, T. C., Lee, H. L., and Azirun, M. S.  (2013). Review of forensically important entomological specimens collected from human cadavers in Malaysia (2005-2010). Journal of Forensic and Legal Medicine, 20(5): 480-482.

4.     Mahat, N. A. and Jayaprakash, P. T. (2013). Forensic entomology in Malaysia:  A review. Malaysian Journal of Forensic Sciences, 4(1): 1-6.

5.     Lee, H. L. (1989). Recovery of forensically important entomological specimens from human cadavers in Malaysia-an update. Malaysian Journal of Pathology, 11: 33-36.

6.     Mahat, N. A., Zafarina, Z., and Jayaprakash, P. T. (2009). Influence of rain and malathion on the oviposition and development of blowflies (Diptera: Calliphoridae) infesting rabbit carcasses in Kelantan, Malaysia. Forensic Science International, 192(1-3): 19-28.

7.     Zhu, G. H., Xu, X. H., Yu, X. J., Zhang, Y., and Wang, J. F.  (2007). Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Sci International, 169(1): 1-5.

8.     Zhu, G.-H., Yu, X.-J., Xie, L.-X., Luo, H., Wang, D., Lv, J.-Y. and Xu, X.-H.  (2013). Time of death revealed by hydrocarbons of empty puparia of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae): A field experiment. PLoS ONE, 8(9): e73043.

9.     Zhu, G. H., Ye, G. Y., Hu, C., Xu, X. H. and Li, K.  (2006). Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age. Medical and Veterinary Entomology, 20(4): 438-44.

10.  Malaysian Meteorological Department (2015). Retrieved from the Malaysia Meteorological Department website: http://www.met.gov.my [Date access 20 June 2015].

11.  Omar, B., Marwi, M., Oothuman, P., and Othman, H.  (1994). Observations on the behaviour of immatures and adults of some Malaysian sarcosaprophagous flies. Tropical Biomedicine, 11: 149-149.

12.  Chau, J. F., Bagtzoglou, A. C., and Willig, M. R.  (2011). The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics, 12(4): 333-341.

13.  Munro, B. H. (2005). Statistical methods for health care research. Lippincott Williams & Wilkins.

14.  Miuc, A., Voncina, E. and Lecnik, U.  (2015). Composition of organic compounds adsorbed on PM10 in the air above maribor. Acta Chimica Slovenia, 62(4): 834-848.

15.  USFDA  (2001). Guidance  for  industry:  Bioanalytical  method  validation.  U.S. Department of Health and Human Services Food and Drug Administration- Center for Drug Evaluation and Research (CDER)-Center for Veterinary Medicine (CVM).

16.  Tiwari, G. and Tiwari, R.  (2010). Bioanalytical method validation: An updated review. Pharmaceutical Methods, 1(1): 25-38.

17.  Serrano, A., Gallego, M., González, J. L., and Tejada, M.  (2008). Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil. Environmental Pollution, 151(3): 494-502.

18.  Sharma, R., Kumar Garg, R., and Gaur, J. R.  (2015). Various methods for the estimation of the post mortem interval from Calliphoridae: A review. Egyptian Journal of Forensic Sciences, 5(1): 1-12.

19.  Ye, G., Li, K., Zhu, J., Zhu, G., and Hu, C.  (2007). Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. J Med Entomol. 44(3): p. 450-456.

20.  Frere, B., Suchaud, F., Bernier, G., Cottin, F., Vincent, B., Dourel, L., Lelong, A. and Arpino, P.  (2014). GC-MS analysis of cuticular lipids in recent and older scavenger insect puparia. An approach to estimate the postmortem interval (PMI). Anal Bioanalytical Chemistry, 406(4): 1081-1088.

21.  Wagner, D., Tissot, M. and Gordon, D.  (2001). Task-related environment alters the cuticular hydrocarbon composition of harvester ants. Journal Chemical Ecology, 27(9): 1805-1819.

22.  Savarit, F. and Ferveur, J. F. (2002). Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. Journal Expimental Biology, 205(20): 3241-3249.

23.  Ingleby, F. C. (2015). Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects, 6(3): 732-742.

24.  Ingleby, F. C., Hosken, D. J., Flowers, K., Hawkes, M. F., Lane, S. M., Rapkin, J., House, C. M., Sharma, M. D. and and Hunt, J.  (2014). Environmental heterogeneity, multivariate sexual selection and genetic constraints on cuticular hydrocarbons in Drosophila simulans. Journal of Evolution Biology, 27(4): 700-713.

25.  Trewin (2014). The climates of the tropics and how they are changing. In Harding, S., McComiskie, R., Wolff, M., Trewin, D., and Hunter, S. (Eds.). State of the Tropics 2014 Report (pp. 39-51). Australia, James Cook University.

26.  Pechal, J. L., Moore, H., Drijfhout, F. and Benbow, M. E.  (2014). Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Sci International, 245: 65-71.

27.  Sarkar, N., Mukherjee, A. and Barik, A.  (2013). Long-chain alkanes: Allelochemicals for host location by the insect pest, Epilachna dodecastigma (Coleoptera: Coccinellidae). Applied Entomology and Zoology, 48(2): 171-179.

28.  Bettelheim, F. A., Brown, W. H., Campbell, M. K. and Farrell, S. O. (2009). Introduction to general, organic and biochemistry. Cengage Learning Publication.

29.  Hejazi, R. F. and Husain, T.  (2004). Landfarm performance under arid conditions. 2. Evaluation of parameters. Environmental Science Technology, 38(8): 2457-2469.

30.  Sharma, A., Kumar, P. and Rehman, M. B.  (2014). Biodegradation of diesel hydrocarbon in soil by bioaugmentation of Pseudomonas aeruginosa: A laboratory scale study. International Journal of Environmental Bioremediation & Biodegradation, 2(4): 202-212.

31.  Wang, Z., Fingas, M., Lambert, P., Zeng, G., Yang, C. and Hollebone, B.  (2004). Characterization and identification of the Detroit River mystery oil spill. Journal of Chromatography A, 1038(1-2): 201-214.

32.  Dibble, J. T. and Bartha, R.  (1979). Effect of environmental parameters on the biodegradation of oil sludge. Applied and Environmental Microbiology, 37(4): 729-739.

33.  Berthe-Corti, L. and Fetzner, S. (2002). Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Acta Biotechnologica, 22(3-4): 299-336.

 

 

 




Previous                    Content                    Next