Malaysian Journal of Analytical Sciences Vol 23 No 3 (2019): 505 - 515

DOI: 10.17576/mjas-2019-2303-15

 

 

 

RAPID SPECTROPHOTOMETRIC METHOD FOR HISTAMINE DETERMINATION IN FISH USING ALIZARIN RED S AND METAL

 

(Kaedah Spektrofotometri Pantas untuk Penentuan Histamin dalam Ikan Menggunakan Alizarin Merah S dan Logam)

 

Miftakhul Jannatin1, Ayu Nabila Izazi Latjuba1, Sri Wahyuni1, Ganden Supriyanto1,2*, Wan Aini Wan Ibrahim3

 

1Department of Chemistry, Faculty of Science and Technology

2Laboratory of Sensor and Biosensor, Institute of Tropical Disease

Universitas Airlangga, Jl. Mulyorejo Kampus C UNAIR Surabaya 60115, Indonesia

3Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  ganden-s@fst.unair.ac.id

 

 

Received: 25 October 2017; Accepted: 22 January 2019

 

 

Abstract

An analytical method for the determination of histamine using metals and alizarin red S (ARS) reagents by UV-Visible spectrophotometry was developed. Cu(II), Co(II) and ARS were used to form colored complex with histamine. The developed method was used to detect qualitatively and quantitatively the presence of histamine. Absorbance of Cu(II) and Co(II) complex were measured at a maximum wavelength of 505.5 and 567 nm, respectively. Optimization of analytical parameters such as concentration of metals, concentration of ARS, sample solution pH, and optimum time for complex formation were performed. Experimental results showed that the optimum concentration of Cu(II) was 50 ppm, 75 ppm ARS, sample solution pH 6, and 15 minutes optimum time, while the optimum concentration of Co(II) was 125 ppm, ARS was 75 and 50 ppm, sample solution pH 5 and 10 minutes optimum time. Method validation indicated that the coefficient of variation, limit of detection (LOD) (S/N =3), and limit of quantitation (LOQ = 10S/N) of Cu(II) were 0.65%, 8.94 ppm, and 29.82 ppm respectively with a sensitivity of 0.0054 ppm and linearity of 0.9959. Accuracy of histamine determination through Cu-ARS-histamine complex at a concentration of 50, 100, and 150 ppm were 105.7% (RSD = 0.777%, n = 3), 105.06% (RSD = 0.606%, n = 3), and 94.12% (RSD = 0.767%, n = 3), respectively. Meanwhile, the CV, LOD, and LOQ of Co(II) were 0.28%; 2.58 ppm; and 8.6 ppm respectively with a sensitivity of 0.0006 ppm and linearity of 0.9965. Accuracy of histamine determination through Co-ARS-histamine complex at a concentration of 50, 75, and 125 ppm were 98.33%, 95.83%, 93.88%, respectively. The proposed method was successfully applied to the determination of histamine in a fish sample with quantitative recovery; for Cu(II) complex (99.23%) and Co(II) complex (102.62%).

 

Keywords:  histamine, metals, Cu(II), Co(II), ARS, UV-visible spectrophotometry

 

Abstrak

Kaedah analisis untuk penentuan histamin menggunakan logam dan reagen alizarin merah S (ARS) telah dibangunkan menggunakan spektrofotometri ultralembayung-nampak. Cu(II), Co(II), dan ARS digunakan untuk membentuk kompleks berwarna dengan histamin. Kaedah yang telah dibangunkan digunakan untuk mengesan histamin secara kualitatif dan kuantitatif. Serapan kompleks Cu(II) dan Co(II) diukur pada panjang gelombang maksimum masing-masing 505.5 dan 567 nm. Pengoptimuman parameter analisis seperti kepekatan logam, kepekatan ARS, pH larutan sampel, dan masa optimum bagi pembentukan kompleks telah dilakukan. Keputusan eksperimen menunjukkan bahawa kepekatan optimum Cu(II) ialah 50 ppm, 75 ppm ARS, pH 6 larutan sampel, dan masa optimum 15 minit, manakala kepekatan optimum Co(II) ialah 125 ppm, ARS ialah 75 dan 50 ppm, pH larutan sampel 5 dan 10 minit masa optimum. Pengesahan kaedah menunjukkan bahawa pekali variasi (CV), had pengesanan (LOD) (S/N = 3) dan had kuantititatif (LOQ = 10 S/N) Cu(II) masing-masing adalah 0.65%, 8.94 ppm dan 29.82 ppm dengan sensitiviti 0.0054 ppm dan kelinearan 0.9959. Ketepatan penentuan histamin melalui kompleks Cu-ARS-histamin pada kepekatan 50, 100, dan 150 ppm ialah 105.7% (RSD = 0.777%, n = 3), 105.06% (RSD = 0.606%, n = 3), dan 94.12% (RSD = 0.767%, n = 3), sementara itu,CV, LOD, dan LOQ Co(II) masing-masing adalah 0.28%; 2.58 ppm dan 8.6 ppm dengan kepekaan 0.0006 ppm dan kelinearan 0.9965. Ketepatan penentuan histamin melalui kompleks Co-ARS-histamin pada kepekatan 50, 75, dan 125 ppm masing-masing adalah 98.33%, 95.83%, dan 93.88%. Kaedah yang dicadangkan berjaya digunakan untuk menentukan histamin dalam sampel ikan dengan pengembalian kuantitatif untuk kompleks Cu(II) (99.23%) dan kompleks Co(II) (102.62%).

 

Kata kunci:  histamin, logam, Cu(II), Co(II), alizarin merah S, spektrofotometri ultralembayung-nampak

 

References

1.       Kaştaş, G., Paşaoğlu, H., Karabulut, B. and Bulut, İ. (2010). Structural and spectroscopic studies on cadmium complex of a biogenic amine, histamine. Chemical Physics Letters, 488 (4-6): 162–167.

2.       Bulushi, I. A., Poole, S., Deeth, H. C. and Dykes, G. A. (2009). Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation—a review. Critical Reviews in Food Science and Nutrition, 49(4): 369–377.

3.       Diaz, M., Ladero, V., Redruello, B., Sanchez-Llana, E., Rio, B., Fernandez, M., Martin, M. C. and Alvarez, M. A. (2016). A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 63: 216-223.

4.       Altieri, I., Semeraro, A., Scalise, F., Calderari, I. and Stacchini, P. (2016). European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD Method. Food Chemistry. 211: 694–699.

5.       Evangelista, W. P., Silva, T. M., Guidi, L. R., Tette, P. A. S., Byrro, R. M. D., Silva, P. S., Fernandes, C. and Gloria, M. B. A. (2016). Quality assurance of histamine analysis in fresh and canned fish. Food Chemistry, 211: 100-106.

6.       Veseli, A., Vasjari, M., Arbneshi, T., Hajrizi, A.,  Svorc, L., Samphao, A. and Kalcher, K. (2016). Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(iv) oxide. Sensors and Actuators B. 228: 774–781.

7.       Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Nutrition (2011). Fish and fishery products hazards and controls guidance, 4th edition 2011, April.

8.       Lehane, L. and Olley, J. (2000). Review histamine fish poisoning revisited. International Journal of Food Microbiology, 58 (1-2): 1–37.

9.       Keow, C. M., Bakar, F. A.,  Salleh, A. B., Heng, L. Y., Wagiran, R., Bean, L. S. (2007). An amperometric biosensor for the rapid assessment of histamine level in tiger prawn (Penaeus monodon) spoilage, Food Chemistry, 105(4): 1636–1641.

10.    Akbari-adergani, B., Norouzi, P., Ganjali, M. R., and Dinarvand, R. (2010). Ultrasensitive flow-injection electrochemical method for determination of histamine in tuna fish sample. Food Research International Journal, 43(4): 1116-1122.

11.    Degefu, H., Amare, M., Tessema, M. and Admassie, S. (2014), Lignin modified glassy carbon electrode for the electrochemical determination of histamine in human urine and wine samples. Electrochimica Acta Journal, 121: 307-314.

12.    Tao, Z., Sato, M., Han, Y., Tan, Z., Yamaguchi, T. and Nakano, T. (2011). A simply and rapid method for histamine analysis in fish and fishery products by TLC determination. Food Control, 22(8): 1154-1577.

13.    Wang, Z., Wu, J., Wu, S. and Bao, A. (2013). High performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge–a review. Analytica Chimica Acta, 24(774): 1-10.

14.    Henry, B., Gizzi, P. and Delpuech, J. (2015), Magnetic Non-equivalence and dynamic NMR of N-methylene protons in a histamine-containing pseudopeptide: Alanyl-glycyl-histamine. Tetrahedron, 71(36): 6227-6244.

15.    An, D., Chen, Z., Zheng, J., Chen, S., Wang, L. and Su, W. (2016). Polyoxometalate functionalized tris(2,2-bipyridyl)dichlororuthenium(II) as the probe for electrochemiluminescence sensing of histamine, Food Chemistry, 194: 966–971.

16.    Chimalakonda, K. C., Pang, E., Weaver, J. L., Howard, K. E., Patel, V. and Boyne II, M. T. (2015). Development and validation of a liquid-chromatography tandem mass spectrometry method to determine in vitro and in vivo histamine release, Journal of Pharmaceutical and Biomedical Analysis, 102: 494–499.

17.    Jancsó, A., Selmeczi, K., Gizzi, P., Nagyc, N. V., Gajda, T. and Henry, B. (2011). The role of terminal amino group and histidine at the fourth position in the metal ion binding of oligopeptides revisited copper(II) and nickel(II) complexes of glycyl-glycyl-glycyl-histamine and its n-boc protected derivative. Journal of Inorganic Biochemistry, 105(1): 92-101.

18.    Kaştaş, G., Pasaoglu, H. and Karabulut, B. (2011). Magnetic, structural and computational studies on transition metal complexes of a neurotransmitter, histamine. Journal of Molecular Structure, 1000(1-3): 39–48.

19.    Sathish, R. S., Kumar, M. R., Rao, G. N., Kumar, K. A. and Janardhana, C. (2007). A water-soluble fluorescent fluoride ion probe based on ARS–Al(III) complex. Spectrochimica Acta Part A, 66: 457–461.

20.    Panahi, H. A., Karimi, M., Moniri, E. and Soudi, H. (2008). Development of a sensitive spectrophotometeric method for determination of copper. African Journal of Pure and Applied Chemistry, 2(10): 96–99.

21.    Rohilla, R. and Gupta, U. (2012) Simultaneous determination of cobalt(ii) and nickel(ii) by first order derivative spectrophotometry in micellar media. E-Journal of Chemistry, 9(3): 1357-1363.

22.    Gahlan, A. A., El-Mottaleb, M.A., Badawy, N. A., Kamale, F. H. and Ali, S. H. (2014). spectrophotometeric studies on binary and ternary complexes of some metal ions with ARS and cysteine. International Journal of Advanced Research, 2(10): 570–584.

23.    Jannatin, M., Supriyanto, G., Pudjiastuti, P. (2017). A novel spectrophotometric method for the determination of histamine based on its complex reaction with Ni(II) and ARS. Indonesian Journal of Chemistry, 17(1): 139-143.

24.    Ali, N. M., Amaniampong, P. N. and Karam, A. (2016). Determination of optimal conditions for eelectrodeposition of tin(II) in the presence of ARS. Heliyon, 2(12): 1-26.

25.    Xie, Z., Wang, Y., Chen, Y., Xu, X., Jin, Z. and Ding, Y, (2017). Tuneable surface enhanced raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish. Food Chemistry, 230: 547–552.

26.    Fain, V. Y., Zaitsev, B. E. and Ryabov, M. A. (2004). Metal complexes with alizarin and ARS: Electronic absorption spectra and structure of ligands. Russian Journal of Coordination Chemistry, 30(5): 365–370.

27.    Day, R. A. and Underwood, A. L. (2002). Analisis kimia kuantitatif. Edisi keenam. Penerbit Erlangga, Jakarta, Indonesia.

 




Previous                    Content                    Next