Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 594 - 604

DOI: 10.17576/mjas-2018-2204-04

 

 

 

ASSESSMENT OF METALS CONCENTRATION IN TILAPIA (Oreochromis sp.) AND ESTIMATION OF DAILY INTAKE BY MALAYSIAN

 

(Penilaian Kepekatan Logam dalam Tilapia (Oreochromis sp.) dan Anggaran Pengambilan Harian oleh Orang Malaysia)

 

Nurulnadia Mohd Yusoff 1*, Siti NurTahirah Jaafar1, Noor Azhar Mohamed Shazili2, Nik Nurasyikin Nik Mohammad Azmi1, Mohamad Sofi Abu Hassan2

 

1School of Marine and Environmental Sciences

2Institute of Oceanography and Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  nurulnadia@umt.edu.my

 

 

Received: 13 December 2017; Accepted: 11 June 2018

 

 

Abstract

Aquaculture of tilapia is growing economically and nutritionally important in Malaysia. Fish is part of the human diet, the assessment of metals concentration in their tissues is compulsory. Cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) concentrations were measured in the muscles, gills and liver tissue of tilapia, Oreochromis sp. Microwave digestion method was employed to extract the target metals followed by measurement of concentration by inductively coupled plasma-mass spectrometry (ICP-MS). The level of Cd, Cu and Pb were significantly high (p <0.05) in the liver of tilapia from Tumpat lagoon with 0.359±0.129, 71.1±31.3 and 2.14±0.451 µg/g dry weight (dw), respectively compared to the fish liver from Terengganu River. However, Zn concentration was significantly high in muscle tissues with 15.2±3.75 µg/g dw. Daily intake of metals in human was also estimated and compared to established standards. The intake levels of Cd, Cu, Pb and Zn were lower than the standards. Hence, tilapia is safe for consumption if they do not ingest the liver. Lipid peroxidation (LPO) activity was measured in the same tissue but the correlation values between level of metals and malondialdehyde (MDA) were inconsistent. Thus, further investigation in controlled environment such as laboratory exposure experiment is necessary.

 

Keywords:  metal, daily intake, Tumpat, Terengganu, lipid peroxidation

 

Abstrak

Kepentingan akuakultur tilapia dari segi ekonomi dan pemakanan semakin meningkat di Malaysia. Oleh kerana ikan adalah sebahagian daripada diet manusia, analisis kepekatan logam di dalam tisu tilapia perlu dilakukan. Kadmium (Cd), kuprum (Cu), plumbum (Pb) dan zink (Zn) telah diukur di dalam tisu otot, insang dan hati tilapia, Oreochromis sp. Kaedah pencernaan gelombang mikro telah digunakan untuk mengekstrak logam sasaran tersebut, dan diikuti dengan pengukuran kepekatan menggunakan spektrometri plasma-jisim berganding secara aruhan (ICP-MS). Tahap Cd, Cu dan Pb di dalam hati tilapia dari lagun Tumpat ternyata tinggi (p <0.05) dengan bacaan masing-masing 0.359 ± 0.129, 71.1 ± 31.3 dan 2.14 ± 0.451 μg/g berat kering (dw) berbanding dengan hati ikan dari Sungai Terengganu. Walau bagaimanapun, kepekatan Zn ternyata tinggi (p <0.05) di dalam tisu otot iaitu 15.2 ± 3.75 μg/g dw. Pengambilan logam harian oleh manusia juga telah dianggarkan dan dibandingkan dengan kadar piawaian yang ditetapkan. Kadar pengambilan Cd, Cu, Pb dan Zn didapati lebih rendah daripada piawaian, maka tilapia selamat untuk dimakan selagi mereka tidak memakan tisu hati. Aktiviti pemperoksidaan lipid (LPO) diukur dalam tisu yang sama tetapi nilai korelasi antara tahap logam dan malondialdehid (MDA) tidak konsisten. Oleh itu, kajian lanjut dalam persekitaran terkawal seperti eksperimen di makmal perlu dilakukan.

 

Kata kunci:  logam, pengambilan harian, Tumpat, Terengganu, pemperoksidaan lipid

 

References

1.       Ng, W. K., and Romano, N. (2013). A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture5(4): 220-254.

2.       Food and Agriculture Organization of the United Nations (2011). FISHSTAT plus: Universal Software for Fishery Statistical Time Series, Version 2.3. FAO Fisheries Department, Fishery Information, Data and Statistical Unit, Rome.

3.       Yusoff, A. (2015). Status of resource management and aquaculture in Malaysia. In M. R. R. Romana-Eguia, F. D. Parado-Estepa, N. D. Salayo and M. J. H. Lebata-Ramos (Eds.), Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges in Responsible Production of Aquatic Species: Proceedings of the International Workshop on Resource Enhancement and Sustainable Aquaculture Practices in Southeast Asia 2014 (RESA) Tigbauan, Iloilo, Philippines: Aquaculture Dept., Southeast Asian Fisheries Development Center: pp. 53-65.

4.       El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 179: 149–168.

5.       Ferreira, M., Caetano, M., Costa, J., Pousão-Ferreira, P., Vale, C. and Reis-Henriques, M. A. (2008). Metal accumulation and oxidative stress responses in, cultured and wild, white seabream from Northwest Atlantic. Science of the Total Environment407(1): 638-646.

6.       Luoma, S. N., and Rainbow, P. S. (2008). Sources and cycles of trace metals. In: Metal Contamination in Aquatic En­vironments: Science and Lateral Management. Cam­bridge University Press, Cambridge: pp. 47-66.

7.       Alam, M. G. M., Tanaka, A., Stagnitti, F., Allinson, G., and Maekawa, T. (2001). Observations on the effects of caged carp culture on water and sediment metal concentrations in Lake Kasumigaura, Japan. Ecotoxicology and Environmental Safety, 48: 107-115.

8.       Pelgrom, S. M. G. J., Lamers, L. P. M., Garritsen, J. A. M., Pels, B. M., Lock, R. A. C., Balm, P. H. M., and Bonga, S. W. (1994). Interactions between copper and cadmium during single and combined exposure in juvenile tilapia Oreochromis mossambicus: Influence of feeding condition on whole body metal accumulation and the effect of the metals on tissue water and ion content. Aquatic Toxicology30(2): 117-135.

9.       Young, R. A. (2005). Toxicity profiles: Toxicity summary for cadmium, risk assessment information system, RAIS, University of Tennessee. Access from rais.ornl.gov/tox/profiles/cadmium.shtml.

10.    Nolan, K. R. (1983). Copper toxicity syndrome. Journal of Orthomolecular Psychiatry12(4): 270-282.

11.    Cheung, A. P., Lam, T. H. J., and Chan, K. M. (2004). Regulation of Tilapia metallothionein gene expression by heavy metal ions. Marine Environmental Research58(2-5): 389-394.

12.    Wong, C. K. C., Yeung, H. Y., Cheung, R. Y. H., Yung, K. K. L. and Wong, M. H. (2000). Ecotoxicological assessment of persistent organic and heavy metal contamination in Hong Kong coastal sediment. Archives of Environmental Contamination and Toxicology38(4): 486-493.

13.    Souid, G., Souayed, N., Yaktiti, F. and Maaroufi, K. (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of SparusaurataEcotoxicology and Environmental Safety89: 1-7.

14.    Van der Oost, R., Beyer, J. and Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13: 57-149.

15.    Gravato, C., Teles, M., Oliveira, M. and Santos, M. A. (2006). Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L. - the influence of pre-exposure to [beta]-naphthoflavone. Chemosphere, 65: 1821-1830.

16.    Türkmen, A., Türkmen, M., Tepe, Y. and Akyurt, I. (2005). Heavy metals in three commercially valuable fish species from Iskenderun Bay, Northern East Mediterranean Sea, Turkey. Food Chemistry91(1): 167-172.

17.    Allinson, G., Salzman, S. A., Turoczy, N., Nishikawa, M., Amarasinghe, U. S., Nirbadha, K. G. S. and De Silva, S. S. (2009). Trace metal concentrations in Nile tilapia (Oreochromisniloticus) in three catchments, Sri Lanka. Bulletin of Environmental Contamination and Toxicology82(3): 389-394.

18.    Visnjic-Jeftic, Z., Jaric, I., Jovanovic, L., Skoric, S., Smederevac-Lalic, M., Nikcevic, M. and Lenhardt, M. (2010). Heavy metal and trace element accumulation in muscle, liver and gills of the Pontic shad (Alosaimmaculata Bennet 1835) from the Danube River (Serbia). Microchemical Journal95(2): 341-344.

19.    Eneji, I. S., Sha’Ato, R. and Annune, P. A. (2011). Bioaccumulation of heavy metals in Fish (Tilapia zilli and Clariasgariepinus) organs from River Benue, North–Central Nigeria. Pakistan Journal of Analytical and Environmental Chemistry12: 1-8.

20.    Reddy, M. S., Basha, S., Kumar, V. S., Joshi, H. V. and Ramachandraiah, G. (2004). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Alang–Sosiya ship scrapping yard, India. Marine Pollution Bulletin48(11-12): 1055-1059.

21.    Shen, L. H., Lam, K. L., Ko, P. W. and Chan, K. M. (1998). Metal concentrations and analysis of metal binding protein fractions from the liver of tilapia collected from Shing Mun River. Marine Environmental Research46(1-5): 597-600.

22.    Low, K. H., Zain, S. M., and Abas, M. R. (2011). Evaluation of metal concentrations in red tilapia (Oreochromis spp) from three sampling sites in Jelebu, Malaysia using principal component analysis. Food Analytical Methods4(3): 276-285.

23.    Wang, S., Ang, H. M., and Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere72(11): 1621-1635.

24.    Zhou, H. Y., Cheung, R. Y. H., Chan, K. M. and Wong, M. H. (1998). Metal concentrations in sediments and Tilapia collected from inland waters of Hong Kong. Water Research32(11): 3331-3340.

25.    Siwela, A. H., Nyathi, C. B., and Naik, Y. S. (2009). Metal accumulation and antioxidant enzyme activity in C. gariepinus, Catfish, and O. mossambicus, tilapia, collected from lower Mguza and Wright Dams, Zimbabwe. Bulletin of Environmental Contamination and Toxicology83(5): 648.

26.    Food and Agriculture Organization of the United Nations (1983). Food and Agriculture Organisation. Circular no. 764. Rome.

27.    TKB, Central Fisheries Research Institute (2002). Fisheries laws and regulations. Ministry of Agriculture and Rural Affairs, Conservation and Control General Management. Ankara, Turkey.

28.    World Health Organization (1989) Environment health criteria. Heavy metals environmental aspects. World Health Organization, Geneva.

29.    Alina, M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H. and Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. International Food Research Journal19(1): 135-140.

30.    Prasad, A. S. (2008). Zinc in human health: effect of zinc on immune cells. Molecular Medicine14(5-6): 353.

31.    Plum, L. M., Rink, L., and Haase, H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health7(4), 1342-1365.

32.    Laurenti, G. (2002). Fish and fishery products: world apparent consumption statistics based on food balance sheets. FAO Fisheries Circular 2002 No. 821, rev. 6. 1961-1999.

33.    Vasseur, P. and Cossu-Leguille, C. (2003). Biomarkers and community indices as complementary tools for environmental safety. Environmental International, 28: 711-717.

34.    Giguère, A., Campbell, P. G., Hare, L., and Cossu-Leguille, C. (2005). Metal bioaccumulation and oxidative stress in yellow perch (Percaflavescens) collected from eight lakes along a metal contamination gradient (Cd, Cu, Zn, Ni). Canadian Journal of Fisheries and Aquatic Sciences62(3): 563-577.

35.    Di Giulio, R. T., Washburn, P. C., Wenning, R. J., Winston, G. W. and Jewell, C. S. (1989). Biochemical responses in aquatic animals: A review of determinants of oxidative stress. Environmental Toxicology and Chemistry8(12): 1103-1123.

36.    Stegeman, J. J., Brouwer, M., Di Giulio, R. T., Förlin, L., Fowler, B. A., Sanders, B. M. and Van Veld, P. A. (1989). Molecular responses to environmental contamination: enzyme and protein synthesis as indicators of chemical exposure and effect. In Biomarkers. Edited by R. J. Hugget, R. A. Kimerle, P. M. J. Mehrle, and H. L. Bergman. Lewis Publishers, Boca Raton. pp. 235-333.

37.    Christie, N. T. and Costa, M. (1984). In vitro assessment of the toxicity of metal compounds. IV. Disposition of metals in cells: interactions with membranes, glutathione, metallothionein, and DNA. Biological Trace Element Research, 6: 139-158.

38.    Halliwell B. and Gutteridge J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal, 219: 1-14.

39.    Chaurasia, S. S. and Kar, A. (1999). An oxidative mechanism for the inhibition of iodothyronine 5′-monodeiodinase activity by lead nitrate in the fish, Heteropneustesfossilis. Water Air and Soil Pollution 111: 417-423.

40.    Romeo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. and Girard, J. P. (2000). Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchuslabrax. Aquatic Toxicology, 48: 185-194.

41.    Ptashynski, M. D., Pedlar, R. M., Evans, R. E., Wautier, K. G., Baron, C. L. and Klaverkamp, J. F. (2001). Accumulation, distribution and toxicology of dietary nickel in lake white fish (Coregonusclupeaformis) and lake trout (Salvelinusnamaycush). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology130: 145-162.

 




Previous                    Content                    Next