Malaysian
Journal of Analytical Sciences Vol 22 No 4 (2018): 594 - 604
DOI:
10.17576/mjas-2018-2204-04
ASSESSMENT OF METALS CONCENTRATION IN TILAPIA (Oreochromis sp.) AND
ESTIMATION OF DAILY INTAKE BY MALAYSIAN
(Penilaian Kepekatan Logam
dalam Tilapia (Oreochromis sp.) dan Anggaran
Pengambilan Harian oleh Orang Malaysia)
Nurulnadia Mohd
Yusoff 1*, Siti NurTahirah Jaafar1, Noor Azhar Mohamed
Shazili2, Nik Nurasyikin Nik
Mohammad Azmi1, Mohamad Sofi Abu Hassan2
1School of Marine and Environmental Sciences
2Institute of Oceanography and Environment
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
*Corresponding author: nurulnadia@umt.edu.my
Received: 13
December 2017; Accepted: 11 June 2018
Abstract
Aquaculture
of tilapia is growing economically and nutritionally important in Malaysia.
Fish is part of the human diet, the assessment of metals concentration in their
tissues is compulsory. Cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn)
concentrations were measured in the muscles, gills and liver tissue of tilapia,
Oreochromis sp. Microwave digestion
method was employed to extract the target metals followed by measurement of
concentration by inductively coupled plasma-mass spectrometry (ICP-MS). The
level of Cd, Cu and Pb were significantly high (p <0.05) in the liver of
tilapia from Tumpat lagoon with 0.359±0.129, 71.1±31.3 and 2.14±0.451 µg/g dry
weight (dw), respectively compared to the fish liver from Terengganu River.
However, Zn concentration was significantly high in muscle tissues with
15.2±3.75 µg/g dw. Daily intake of metals in human was also estimated and
compared to established standards. The intake levels of Cd, Cu, Pb and Zn were
lower than the standards. Hence, tilapia is safe for consumption if they do not
ingest the liver. Lipid peroxidation (LPO) activity was measured in the same
tissue but the correlation values between level of metals and malondialdehyde
(MDA) were inconsistent. Thus, further investigation in controlled environment
such as laboratory exposure experiment is necessary.
Keywords: metal,
daily intake, Tumpat, Terengganu, lipid peroxidation
Abstrak
Kepentingan akuakultur tilapia
dari segi ekonomi dan pemakanan semakin meningkat di Malaysia. Oleh kerana ikan
adalah sebahagian daripada diet manusia, analisis kepekatan logam di dalam tisu
tilapia perlu dilakukan. Kadmium (Cd), kuprum (Cu), plumbum (Pb) dan zink (Zn)
telah diukur di dalam tisu otot, insang dan hati tilapia, Oreochromis sp. Kaedah pencernaan gelombang mikro telah digunakan
untuk mengekstrak logam sasaran tersebut, dan diikuti dengan pengukuran
kepekatan menggunakan spektrometri plasma-jisim berganding secara aruhan
(ICP-MS). Tahap Cd, Cu dan Pb di dalam hati tilapia dari lagun Tumpat ternyata
tinggi (p <0.05) dengan bacaan masing-masing 0.359 ± 0.129, 71.1 ± 31.3 dan
2.14 ± 0.451 μg/g berat kering (dw) berbanding dengan hati ikan dari Sungai
Terengganu. Walau bagaimanapun, kepekatan Zn ternyata tinggi (p <0.05) di
dalam tisu otot iaitu 15.2 ± 3.75 μg/g dw. Pengambilan logam harian oleh manusia
juga telah dianggarkan dan dibandingkan dengan kadar piawaian yang ditetapkan.
Kadar pengambilan Cd, Cu, Pb dan Zn didapati lebih rendah daripada piawaian,
maka tilapia selamat untuk dimakan selagi mereka tidak memakan tisu hati.
Aktiviti pemperoksidaan lipid (LPO) diukur dalam tisu yang sama tetapi nilai
korelasi antara tahap logam dan malondialdehid (MDA) tidak konsisten. Oleh itu,
kajian lanjut dalam persekitaran terkawal seperti eksperimen di makmal perlu
dilakukan.
Kata kunci: logam,
pengambilan harian, Tumpat, Terengganu, pemperoksidaan lipid
References
1.
Ng, W. K., and Romano, N.
(2013). A review of the nutrition and feeding management of farmed tilapia
throughout the culture cycle. Reviews in Aquaculture, 5(4):
220-254.
2.
Food and Agriculture Organization of the
United Nations (2011). FISHSTAT plus: Universal Software for Fishery
Statistical Time Series, Version 2.3. FAO Fisheries Department, Fishery
Information, Data and Statistical Unit, Rome.
3.
Yusoff, A. (2015). Status of resource
management and aquaculture in Malaysia. In M. R. R. Romana-Eguia, F. D.
Parado-Estepa, N. D. Salayo and M. J. H. Lebata-Ramos (Eds.), Resource
Enhancement and Sustainable Aquaculture Practices in Southeast Asia: Challenges
in Responsible Production of Aquatic Species: Proceedings of the International
Workshop on Resource Enhancement and Sustainable Aquaculture Practices in
Southeast Asia 2014 (RESA) Tigbauan, Iloilo, Philippines: Aquaculture Dept.,
Southeast Asian Fisheries Development Center: pp. 53-65.
4.
El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed
tilapia, Oreochromis spp. Aquaculture, 179: 149–168.
5.
Ferreira, M., Caetano, M.,
Costa, J., Pousão-Ferreira, P., Vale, C. and Reis-Henriques, M. A. (2008).
Metal accumulation and oxidative stress responses in, cultured and wild, white
seabream from Northwest Atlantic. Science of the Total Environment, 407(1): 638-646.
6.
Luoma, S. N., and Rainbow, P. S. (2008).
Sources and cycles of trace metals. In: Metal Contamination in Aquatic Environments:
Science and Lateral Management. Cambridge University Press, Cambridge: pp.
47-66.
7.
Alam, M. G. M.,
Tanaka, A., Stagnitti, F., Allinson, G., and Maekawa, T. (2001). Observations
on the effects of caged carp culture on water and sediment metal concentrations
in Lake Kasumigaura, Japan. Ecotoxicology
and Environmental Safety, 48: 107-115.
8.
Pelgrom, S. M. G. J.,
Lamers, L. P. M., Garritsen, J. A. M., Pels, B. M., Lock, R. A. C., Balm, P. H.
M., and Bonga, S. W. (1994). Interactions between copper and cadmium during
single and combined exposure in juvenile tilapia Oreochromis mossambicus: Influence of feeding condition on whole
body metal accumulation and the effect of the metals on tissue water and ion
content. Aquatic Toxicology, 30(2): 117-135.
9.
Young, R. A. (2005). Toxicity profiles:
Toxicity summary for cadmium, risk assessment information system, RAIS,
University of Tennessee. Access from rais.ornl.gov/tox/profiles/cadmium.shtml.
10.
Nolan, K. R. (1983). Copper
toxicity syndrome. Journal of Orthomolecular Psychiatry, 12(4): 270-282.
11.
Cheung, A. P., Lam, T. H.
J., and Chan, K. M. (2004). Regulation of Tilapia metallothionein gene
expression by heavy metal ions. Marine Environmental Research, 58(2-5): 389-394.
12.
Wong, C. K. C., Yeung, H.
Y., Cheung, R. Y. H., Yung, K. K. L. and Wong, M. H. (2000). Ecotoxicological
assessment of persistent organic and heavy metal contamination in Hong Kong
coastal sediment. Archives of Environmental Contamination and
Toxicology, 38(4):
486-493.
13.
Souid, G., Souayed, N.,
Yaktiti, F. and Maaroufi, K. (2013). Effect of acute cadmium exposure on metal
accumulation and oxidative stress biomarkers of Sparusaurata. Ecotoxicology and Environmental Safety, 89: 1-7.
14.
Van der Oost, R.,
Beyer, J. and Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers
in environmental risk assessment: A review. Environmental
Toxicology and Pharmacology, 13: 57-149.
15.
Gravato, C., Teles,
M., Oliveira, M. and Santos, M. A. (2006). Oxidative stress, liver
biotransformation and genotoxic effects induced by copper in Anguilla anguilla L. - the influence of
pre-exposure to [beta]-naphthoflavone. Chemosphere,
65: 1821-1830.
16.
Türkmen, A., Türkmen, M.,
Tepe, Y. and Akyurt, I. (2005). Heavy metals in three commercially valuable
fish species from Iskenderun Bay, Northern East Mediterranean Sea,
Turkey. Food Chemistry, 91(1):
167-172.
17.
Allinson, G., Salzman, S.
A., Turoczy, N., Nishikawa, M., Amarasinghe, U. S., Nirbadha, K. G. S. and De
Silva, S. S. (2009). Trace metal concentrations in Nile tilapia (Oreochromisniloticus) in three
catchments, Sri Lanka. Bulletin of Environmental Contamination and
Toxicology, 82(3):
389-394.
18.
Visnjic-Jeftic, Z., Jaric,
I., Jovanovic, L., Skoric, S., Smederevac-Lalic, M., Nikcevic, M. and Lenhardt,
M. (2010). Heavy metal and trace element accumulation in muscle, liver and
gills of the Pontic shad (Alosaimmaculata
Bennet 1835) from the Danube River (Serbia). Microchemical Journal, 95(2): 341-344.
19.
Eneji, I. S., Sha’Ato, R. and
Annune, P. A. (2011). Bioaccumulation of heavy metals in Fish (Tilapia zilli and Clariasgariepinus)
organs from River Benue, North–Central Nigeria. Pakistan Journal of
Analytical and Environmental Chemistry, 12: 1-8.
20.
Reddy, M. S., Basha, S.,
Kumar, V. S., Joshi, H. V. and Ramachandraiah, G. (2004). Distribution,
enrichment and accumulation of heavy metals in coastal sediments of Alang–Sosiya
ship scrapping yard, India. Marine Pollution Bulletin, 48(11-12): 1055-1059.
21.
Shen, L. H., Lam, K. L., Ko,
P. W. and Chan, K. M. (1998). Metal concentrations and analysis of metal
binding protein fractions from the liver of tilapia collected from Shing Mun
River. Marine Environmental Research, 46(1-5): 597-600.
22.
Low, K. H., Zain, S. M., and
Abas, M. R. (2011). Evaluation of metal concentrations in red tilapia (Oreochromis spp) from three sampling
sites in Jelebu, Malaysia using principal component analysis. Food
Analytical Methods, 4(3):
276-285.
23.
Wang, S., Ang, H. M., and
Tadé, M. O. (2008). Novel applications of red mud as coagulant, adsorbent and
catalyst for environmentally benign processes. Chemosphere, 72(11): 1621-1635.
24.
Zhou, H. Y., Cheung, R. Y.
H., Chan, K. M. and Wong, M. H. (1998). Metal concentrations in sediments and
Tilapia collected from inland waters of Hong Kong. Water Research, 32(11): 3331-3340.
25.
Siwela, A. H., Nyathi, C.
B., and Naik, Y. S. (2009). Metal accumulation and antioxidant enzyme activity
in C. gariepinus, Catfish, and O. mossambicus, tilapia, collected from
lower Mguza and Wright Dams, Zimbabwe. Bulletin of Environmental
Contamination and Toxicology, 83(5):
648.
26.
Food and Agriculture Organization of the United Nations (1983). Food and
Agriculture Organisation. Circular no. 764. Rome.
27.
TKB, Central Fisheries Research Institute (2002). Fisheries laws and
regulations. Ministry of Agriculture and Rural Affairs, Conservation and
Control General Management. Ankara, Turkey.
28.
World Health Organization (1989) Environment health criteria. Heavy
metals environmental aspects. World Health Organization, Geneva.
29.
Alina, M., Azrina, A., Mohd
Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H. and Muhammad Rizal, R.
(2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine
fish and shellfish along the Straits of Malacca. International Food
Research Journal, 19(1):
135-140.
30.
Prasad, A. S. (2008). Zinc
in human health: effect of zinc on immune cells. Molecular Medicine, 14(5-6): 353.
31.
Plum, L. M., Rink, L., and
Haase, H. (2010). The essential toxin: impact of zinc on human health. International
Journal of Environmental Research and Public Health, 7(4), 1342-1365.
32.
Laurenti, G. (2002). Fish
and fishery products: world apparent consumption statistics based on food
balance sheets. FAO Fisheries Circular 2002 No. 821, rev. 6. 1961-1999.
33.
Vasseur, P. and Cossu-Leguille, C. (2003). Biomarkers and community
indices as complementary tools for environmental safety. Environmental International, 28: 711-717.
34.
Giguère, A., Campbell, P.
G., Hare, L., and Cossu-Leguille, C. (2005). Metal bioaccumulation and
oxidative stress in yellow perch (Percaflavescens)
collected from eight lakes along a metal contamination gradient (Cd, Cu, Zn,
Ni). Canadian Journal of Fisheries and Aquatic Sciences, 62(3): 563-577.
35.
Di Giulio, R. T., Washburn,
P. C., Wenning, R. J., Winston, G. W. and Jewell, C. S. (1989). Biochemical
responses in aquatic animals: A review of determinants of oxidative
stress. Environmental Toxicology and Chemistry, 8(12): 1103-1123.
36.
Stegeman, J. J., Brouwer, M., Di Giulio, R.
T., Förlin, L., Fowler, B. A., Sanders, B. M. and Van Veld, P. A. (1989).
Molecular responses to environmental contamination: enzyme and protein
synthesis as indicators of chemical exposure and effect. In Biomarkers. Edited
by R. J. Hugget, R. A. Kimerle, P. M. J. Mehrle, and H. L. Bergman. Lewis
Publishers, Boca Raton. pp. 235-333.
37.
Christie, N. T. and Costa, M. (1984). In vitro assessment of the
toxicity of metal compounds. IV. Disposition of metals in cells: interactions
with membranes, glutathione, metallothionein, and DNA. Biological Trace Element Research, 6: 139-158.
38.
Halliwell B. and
Gutteridge J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals
and disease. Biochemical Journal, 219: 1-14.
39.
Chaurasia, S. S. and Kar, A. (1999). An oxidative mechanism for the
inhibition of iodothyronine 5′-monodeiodinase activity by lead nitrate in the
fish, Heteropneustesfossilis. Water
Air and Soil Pollution 111:
417-423.
40.
Romeo, M., Bennani,
N., Gnassia-Barelli, M., Lafaurie, M. and Girard, J. P. (2000). Cadmium and
copper display different responses towards oxidative stress in the kidney of
the sea bass Dicentrarchuslabrax. Aquatic Toxicology, 48: 185-194.
41.
Ptashynski, M. D., Pedlar, R. M., Evans, R. E., Wautier, K. G., Baron,
C. L. and Klaverkamp, J. F. (2001). Accumulation, distribution and toxicology
of dietary nickel in lake white fish (Coregonusclupeaformis) and lake
trout (Salvelinusnamaycush). Comparative Biochemistry and Physiology Part C: Toxicology
and Pharmacology, 130: 145-162.