Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 715 - 722

DOI: 10.17576/mjas-2018-2204-18

 

 

 

ENZYMATIC HYDROLYSIS OF OIL PALM EMPTY FRUIT BUNCH AND ITS KINETICS

 

(Hidrolisis Enzim Tandan Buah Kelapa Sawit dan Sifat Kinetik)

 

Nazlee Faisal Ghazali* and Nurul Aqilah Makhtar

 

Department of Bioprocess Engineering,

Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

 

*Corresponding author:  nazlee@utm.my

 

 

Received: 16 April 2017; Accepted: 7 March 2018

 

 

Abstract

Oil palm lignocellulosic biomass is a potential substrate for the production of renewable chemicals from agricultural wastes.  Empty fruit bunch (EFB) is one of the biomass waste aside from the trunk and frond from oil palm plantation. Bioconversion of oil palm lignocellulose using enzymes to fermentable sugar could be used for the production of bioethanol. However, the bioconversion is challenging due to the complex interactions between substrate and enzymes. In order to utilize EFB as the feedstock, it is important to understand the effect of enzyme concentration and substrate concentration on the bioconversion of EFB. In this study, we investigated the effect of enzyme loading and substrate loading for the maximum conversion of oil palm lignocellulose. The results show that as the enzyme loading increased, the rate of reaction and also the yield of reducing sugar (RS) and glucose initially increased and then plateaued. High enzyme loading might lead to enzyme in excess and enzyme layering around the substrate. Similar pattern was also observed on the reaction rate as the substrate loading increased. However, the yield of RS and glucose decreased as the substrate loading increase. It could be explained by the substrate recalcitrance and product inhibition. The initial product formation rates were used to determine the kinetic parameters such as maximum rate constant Vmax and the half saturation constant Km. From this study, feasible amount of cellulase and EFB substrate could be identified for maximum conversion and facilitate bioethanol production.

 

Keywords:  cellulase, oil palm lignocellulose, biomass, empty fruit bunch

 

Abstrak

Biojisim kelapa sawit lignoselulosa ialah substrat yang berpotensi untuk pengeluaran bahan kimia boleh diperbaharui daripada sisa pertanian. Tandan buah sawit (EFB) merupakan salah satu daripada sisa biojisim selain daripada batang dan pelepah dari ladang kelapa sawit. Penukaran biologi daripada lignoselulosa kelapa sawit menggunakan enzim untuk menghasilkan gula boleh digunakan untuk pengeluaran bioetanol. Walau bagaimanapun, penukaran biologi adalah mencabar berikutan interaksi kompleks antara substrat dan enzim. Dalam usaha untuk menggunakan EFB sebagai bahan mentah, ia adalah penting untuk memahami kesan kepekatan enzim dan substrat kepekatan pada penukaran EFB. Dalam kajian ini, kami telah menyiasat kesan enzim dan substrat untuk penukaran maksimum lignoselulosa kelapa sawit. Keputusan menunjukkan apabila muatan enzim meningkat, kadar tindak balas dan hasil gula (RS) dan glukosa pada awalnya meningkat tetapi kemudiannya mendatar. Muatan enzim tinggi mungkin membawa kepada enzim yang berlebihan dan enzim lapisan sekitar substrat. Corak yang sama berlaku pada kadar tindak balas apabila muatan substrat meningkat. Walau bagaimanapun, hasil RS dan glukosa menurun apabila muatan substrat meningkat. Ia boleh dijelaskan oleh kesusahan degradasi substrat dan perencatan oleh produk. Kadar pembentukan produk awal digunakan untuk menentukan parameter kinetik seperti kadar maksimum malar Vmax dan pemalar separuh tepu Km. Daripada kajian ini, jumlah celulase dan EFB substrat dapat dikenalpasti untuk penukaran maksimum dan memudahkan pengeluaran bioethanol.

 

Kata kunci:  selulosa, lignoselulosa kelapa sawit, biojisim, tanda buah kelapa sawit

 

References

1.       Kumar, R. and Wyman, C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25(2): 302-314.

2.       Jorgensen, H., Kristensen, J. B. and Felby, C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts Biorefining, 1(2): 119-134.

3.       Tengborg, C., Galbe, M. and Zacchi, G. (2001). Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam pretreated softwood. Biotechnology Progress, 17(1): 110-117.

4.       Zhao, X., Song, Y. and Liu, D.  (2011). Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2, 3-butanediol production. Enzyme and Microbial Technology, 49(4): 413-419.

5.       Van Dyk, J. S. and Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6): 1458-1480.

6.       Hamzah, F., Idris, A. and Shuan, T. K. (2011). Preliminary study on enzymatic hydrolysis of treated oil palm (Elaies) empty fruit bunch fibre (EFB) by using combination of cellulose and β 1-4 glucosidase. Biomass and Bioengineering, 35(3): 1055-1059.

7.       Miller, G. L. (1959). Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3): 426-428.

8.       Lee Y. H. and Fan L. T. (1983). Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times. Biotechnology and Bioengineering, 25(4): 939-966.

9.       Desphande, M. V. and Erikson, K. E. (1984). Reutilization of enzymes for saccharification of lignocellulosic materials. Enzyme and Microbial Technology, 6(8): 338-340.

10.    Qi, B., Chen, X., Su, Yi. and Wan, Y. (2011). Enzyme adsorption and recycle during hydrolysis of wheat straw lignocellulose. Bioresource Technology, 102(3): 2881-2889.

11.    Fox, J. M., Levine, S. E., Clark, D. S. and Blanch, H. W. (2012). Initial-and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry, 51(1): 442-452.

12.    Kumar, R., Singh, S. and Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5): 377-339.

 




Previous                    Content                    Next