Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 579 - 585

DOI: 10.17576/mjas-2018-2204-02

 

 

 

CHEMICAL CHARACTERIZATION OF Berberis vulgaris L. var. asperma EDIBLE BERRIES

 

(Pencirian Kimia Buah Beri Boleh di Makan Berberis vulgaris L. var. asperma)

 

Maria Carmen S. Tan1*, Irving D. Chiong1, Mary Stephanie S. Carranza1, Regina M. Salmasan1, Glenn G. Oyong2

 

 1Chemistry Department

2Molecular Science Unit Laboratory, Center for Natural Science and Environmental Research

De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines

 

*Corresponding author:  maria.carmen.tan@dlsu.edu.ph

 

 

Received: 11 January 2018; Accepted: 4 June 2018

 

 

Abstract

Berberis vulgaris L. var. asperma edible fruits have been found to have activity against several microbes and to be cytotoxic in certain immortalized cancer cell lines. In this study, the berries were analyzed to find the possible metabolites that could be the curative agents. Evaluations using an LC-UV/MS technique established the presence of chlorogenic acid, rutin, and berberine in ethanolic extracts of B. vulgaris berries. The ethanolic sample was found to have 47.1 mg/kg of 3-(3,4-dihydroxycinnamoyl) quinic acid, 0.02 mg/kg of rutin and 0.36 mg/kg of berberine. The free radical scavenging activity of the mixture of polyphenolics exhibited an IC50 at 34.48 µg/mL. An assessment of zinc and iron concentration using atomic absorbance spectrophotometry (AAS) was determined to be 45.3 and 198.1 mg/kg, respectively. The investigation of the volatile constituents through solid phase microextraction (SPME) and by dichloromethane extraction was explored using a gas chromatograph equipped with a mass spectrometer (GC-EI-MS). SPME analyses showed the presence of palmitic acid (C16:0), vaccenic acid (C18:1 Δ 11 trans) and stearic acid (C18:0). Three saturated fatty acids, SFAs (C14:0, C16:0, and C18:0), two methyl esters of the SFAs (C14:0 and C16:0), and one polyunsaturated fatty acid, PUFA (C18:2  Δ 9,12 cis) were detected in the dichloromethane extracts of the berries.

 

Keywords:  atomic absorption spectroscopy, Berberis vulgaris, mass spectrometry

 

Abstrak

Buah yang boleh dimakan Berberis vulgaris L. var. asperma telah diketahui mempunyai aktiviti melawan beberapa jenis mikrob and menjadi sitotoksik di dalam sesetengah titisan sel kekal. Dalam kajian ini, buah beri dianalisis untuk mencari kebarangkalian metabolit yang boleh digunakan sebagai agen penawar. Penilaian menggunakan teknik LC-UV/MS dibangunkan untuk mengesan kehadiran asid klorogenik, rutin dan berberin di dalam ekstrak beri B.vulgaris. Sampel etanolik ditemui mengandungi 47.1 mg/kg 3- (3,4 – dihidroksisinamoil) asid quinik, 0.02 mg/kg rutin dan 0.36 mg/kg berberin. Pemerangkapan aktiviti radikal bebas bagi campuran polifenolik wujud pada IC50 34.48 µg/mL. Penilaian kepekatan zink dan besi menggunakan spektrofotometri serapan atom (AAS) telah ditentukan dengan masing-masing ialah 45.3 dan 198.1 mg/kg. Penyiasatan terhadap jujukan sebatian merupa dilakukan menggunakan pengekstrakan mikro fasa pepejal (SPME) dan pengekstrakan diklorometana sebelum di analisis menggunakan kromatograf gas dilengkapi spektrometer jisim (GC-EI-MS). Analisis SPME menunjukkan kehadiran asid palmitik (C16:0), asid vasenik (C18:1 Δ 11 trans) dan asid stearik (C18:0). Tiga asid lemak tepu, SFAs (C14:0, C16:0, dan C18:0), dua metal ester SFAs (C14:0 and C16:0), and satu asid lemak politaktepu, PUFA (C18:2 Δ 9,12 cis) telah dikesan di dalam ekstrak diklorometana buah beri.

 

Kata kunci:  spektroskopi serapan atom, Berberis vulgaris, spektrometri jisim

 

References

1.       Shamsa, F.,  Ahmadiani, A. and Khosrokhavar, R. (1999). Antihistaminic and anticholinergic activity of barberry fruit (Berberis vulgaris) in the guinea-pig ileum. Journal of Ethnopharmacology, 64(2):161-166.

2.       Taheri, S., Zarei A., Ashtiyani, S. C., Rezaei, A. and Zaheiri, S. (2012). Evaluation of the effects of hydroalcoholic extract of Berberis vulgaris root on the activity of liver enzymes in male hypercholesterolemic rats. Avicenna Journal of Phytomedicine, 2(3): 153-161.

3.       Koncic, M. Z., Kremer, D., Karlovic, K. and Kosalec, I. (2010). Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food and Chemical Toxicology, 48: 2176-2180.

4.       Sikder, A. A., Kuddus, R., Kasier, A. and Arshad, W. M. (2010). In vitro membrane stabilizing activity, total phenolic content, free radical scavenging and cytotoxic properties of Aphanamixis polystachya (Wall.). Bangladesh Pharmaceutical Journal, 13(2): 55-59.

5.       Hasler, A., Sticher, O. and Meier, J. (1992). Identification and determination of the flavonoids from Ginkgo biloba by high-performance liquid chromatography. Journal of Chromatography, 605(1): 41–48.

6.       Olszewska, M. (2007). Quantitative HPLC analysis of flavonoids and chlorogenic acid in the leaves and Inflorescences of Prunus serotina Ehrh. Acta Chromatographica, 19: 253-269.

7.       Gordon, M. H. and Wishart, K. (2010). Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins in vitro. Journal of Agriculture Food Chemistry, 58: 5828-5833.

8.       Boettler, U., Volz Pahlke, N. G., Teller, N., Kotyczka, C., Somoza, V., Stiebitz, H., Bytof, G., Lantz, I., Lang, R., Hofmann, T. and Marko, D. (2011). Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Molecular Nutrition and Food Research, 55: 798–802.

9.       Wang, G. F., Shi, L. P., Ren, Y. D., Liu, Q. F., Liu, H. F., Zhang, R. J., Li, Z., Zhu, F. H., He, P. L., Tang, W., Tao, P. Z., Li, C., Zhao, W. M. and Zuo, J. P. (2009). Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Research, 83: 186-190.

10.    Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M. and Iseki, K. (2011).  In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403: 136–138.

11.    Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. (2011). Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids and Surfaces A: Physicochemical Engineering Aspects, 374(1-3): 1-8.

12.    Tang, Y. Z. and Liu, Z. Q. (2008). Chemical kinetic behavior of chlorogenic acid in protecting erythrocyte and DNA against radical-induced oxidation. Journal of Agriculture and Food Chemistry, 56: 11025–11029.

13.    Khan, M. M., Ahmad, A., Ishrat, T., Khuwaja, G., Srivastawa, P., Khan, M. B., Raza, S. S., Javed, H., Vaibhav, K., Khan, A. and Islam, F. (2009). Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Research, 1292: 123-135.

14.    Lin, J. P., Yang, J. S., Lin, J. J., Lai, K. C., Lu, H. F., Ma, C. Y., Sai-Chuen W. R. Wu, K. C., Chueh, F. S., Gibson, W. and Chung, J. G. (2012). Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environmental Toxicology, 27(8): 480-484.

15.    Iawasa, K., Kamigauchi, M., Suguira, M., Nanba, H. (1997). Antimicrobial activity of some 13-alkyl a substituted protoberberinium salts. Planta Medica, 63(3): 196-198.

16.    Muller, K., Ziereis, K. and Gawlik, I. (1995). The antisporatic Mahonia aquifolium and its active constituents; II. Antiproliferative against cell growth of human keratinocytes. Planta Medica, 61(1): 74-75.

17.    Kettman, V., Kosfalova, D., Jantova, S., Cernakova, M. and Drimal, J. (2004). In vitro cytotoxicity of berberine against HeLa and L1210 cancer cell lines. Pharmazie, 59(7): 548-551.

18.    Ling, C. A., Mahmud, S., Khadijah, S., Bakhori, M., Sirelkhatim, A., Mohamad, D., Hasan, H., Seeni, A. and Rahman, R. A. (2013). Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceramics International, 40(2): 2993–3001.

19.    Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. (2011). Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374(1-3): 1-8.

20.    Isaacs, C. E., Kim, K. S. and Thormar, H. (1994). Inactivation of enveloped viruses in human bodily fluids by purified lipids.  Annals of the New York Academy of Sciences, 724: 457–464.

21.    Petschow, B. W., Batema, R. P. and Ford L. L. (1996). Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrobial Agents and Chemotherapy, 40: 302–306.

22.    Isaacs, C. E., Litov, R. E. and Thormar, H. (1995). Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. The Journal of Nutritional Biochemistry, 6: 362–366.

23.    Bergsson, G., Steingrı́msson, O. and Thormar, H. (2002). Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. International Journal of Antimicrobial Agents, 20(4): 258–262. 

24.    Wang, Y., Lu, J., Ruth, M. R., Goruk, S. D., Reaney, M. J., Glimm, D. R., Vine, D. F. and Field, C. J. (2008). Trans-11 vaccenic acid dietary supplementation induces hypolipidemic effects in JCR:LA-cp rats. Journal of Nutrition, 138(11): 2117-2122.

25.    Lim,, J. N., Oh,  J. J., Wang, T.,  Lee, J. S.,  Kim, S. H., Kim, Y. J. and Lee, H. G. (2014). Trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients, 6(2): 627-636.




Previous                    Content                    Next