Malaysian Journal of Analytical Sciences Vol 22 No 4 (2018): 570 - 578

DOI: 10.17576/mjas-2018-2204-01

 

 

 

MACRO, MICRO, AND NON-ESSENTIAL ELEMENTS IN DIFFERENT PARTS OF Rhizophora apiculata

 

(Makro, Mikro dan Elemen Tidak Perlu di dalam Pelbagai Bahagian Rhizophora apiculata)

 

Fathullah Abdullah1, Hasrizal Shaari1,2*, Behara Satyanarayana2, Wan Mohd Afiq Wan Mohd Khalik1,

Mohd. Zaidi Mohd. Jaafar1

 

1School of Marine and Environmental Science

2Institute of Oceanography and Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,Malaysia

 

*Corresponding author: riz@umt.edu.my

 

 

Received: 26 August 2017; Accepted: 1 July 2018

 

 

Abstract

A total of 50 samples of different parts (roots, stem disks, barks, trunks, twigs, and leaves) from five individuals of 20-year-old Rhizophora apiculata were sampled at Matang Mangrove Forest, Kuala Sepetang, Perak. The aims of this study were to determine the concentration of selected macroelements (K, Mg, Na, and Ca), microelements (Al, Fe, Zn, Mn and Cu) and non-essential elements (Pb and Cd) in different parts of R. apiculata. The elemental analysis was conducted by using inductively coupled plasma-optical emission spectrometer (ICP-OES). The mean value of the studied elements was recorded in the decreasing order of Ca > Na > K > Mg > Mn > Al > Fe > Zn > Cu > Pb > Cd. The highest value of Ca compared to other elements in the major parts of R. apiculata is closely related to the role of this element in the cell wall formation. The variable concentration of elements in the different parts of R. apiculata is attributed to the absorption mechanism of the trees. High values of some macroelements than microelements suggest that a macroelement is more significant for the growth of R. apiculata. The lower mean values of Pb and Cd than other elements suggest that non-essential elements are not significantly involved in the major process of this mangrove species. This study is crucial in providing a preliminary data of the different types of elements in the different parts of the R. apiculata species, and its importance for the future development of the charcoal industry in Kuala Sepetang, Perak.

 

Keywords:  Mangrove forest, Rhizophora apiculata, macroelement, microelement, non-essential element

 

Abstrak

Sebanyak 50 sampel terdiri daripada pelbagai bahagian (akar, batang pokok, kulit, dahan, ranting dan daun) daripada 5 batang pokok spesis Rhizophora apiculata berusia 20 tahun telah di ambil di Hutan Simpan Matang. Kuala Sepetang, Perak. Tujuan kajian ini adalah untuk mencari nilai kepekatan elemen yang terpilih daripada makroelemen (K, Mg, Na dan Ca), mikroelemen (Al, Fe, Zn, Mn and Cu) and elemen tidak perlu (Pb dan Cd) yang terdapat dalam pelbagai bahagian pokok R. apiculata. Kaedah mendapatkan elemen adalah dengan menggunakan spektrometer pancaran optikal- gandingan aruhan plasma (ICP-OES). Purata jumlah elemen dalam kajian ini dicatat dalam kedudukan menurun daripada Ca > Na > K > Mg > Mn > Al > Fe > Zn > Cu > Pb > Cd. Elemen Ca adalah tertinggi jika dibandingkan dengan elemen yang lain adalah disebabkan pokok Rhizophora apiculata memerlukan elemen ini untuk pembentukkan sel-sel dinding. Jumlah elemen yang pelbagai adalah disebabkan daripada cara mekanisma penyerapan pokok tersebut. Makroelemen tinggi dari mikroelemen adalah disebabkan makroelemen memerlukan sejumlah besar untuk proses tumbesaran pokok. Elemen Pb dan Cd dicatat rendah dibandingkan element lain disebabkan elemen ini tidak terlibat secara terus dalam proses utama tumbesaran pokok ini. Kajian ini dikaji adalah untuk rujukan bagi spesis Rhizophora apiculata dan ini adalah penting bagi pembuatan industri arang kayu di Kuala Sepetang, Perak.

 

Kata kunci:  Hutan bakau, Rhizophora apiculata, makroelemen, mikroelemen, elemen tak perlu

 

References

1.       Mazlan, A. G., Zaidi, C. C., Wan-Lotfi, W. M. and Othman, B. H. R. (2005). On the current status of marine bio-diversity in Malaysia. Indian Journal of Marine Science, 34: 76-87.

2.       Agoramoorty, G., Chen, F. A. and Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Journal of Environmental Pollution, 155: 320-326.

3.       Lewis, M., Pryor, R. and Wilking, L. (2011). Fate and effects of anthropogenic chemical in mangrove ecosystem: A review. Journal of Environmental Pollution, 159: 2328-2346.

4.       Sternberg, L. D. L., Teh, S. Y., Ewe, S. M. L., Miralles- Wilhelm, F. and DeAngelis, D. l. (2007). Competition between hardwood hammocks and mangrove. Journal of Ecosystem, 10: 648-660.

5.       Kathiresan, K. and Qasim, S. Z. (2005). Biodiversity of mangrove ecosystem. New Delhi, India: Hindustan Publishing Corporation (India), New Delhi: pp. 251.

6.       Rönnbäck, P., Troell, M., Kautsky, N. and Primavera, J. H. (1999). Distribution pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao mangrove, Philippines. Journal of Estuarine, Coastal and Shelf Science, 48: 223-234.

7.       MacFarlane G. R. and Burchett M. D. (2002). Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. Marine Environmental Research, 54: 65–84.

8.       Silva, C. A. R., Lacerda, L. D. and Rezende, C. E. (1990). Heavy metal reservoirs in a red mangrove forest. Journal of Biotropica, 22: 339–345.

9.       Kamaruzzaman, B. Y. and Ong, M. C. (2009). Accumulation of lead and copper in Rhizophora apiculata from Setiu mangrove forest, Terengganu, Malaysia. Journal of Environmental Biology, 30: 821-824.

10.    Kamaruzzaman, B. Y., Rina Sharlinda, M. Z., John, B. A. and Waznah, A. S. (2011). Accumulation and Distribution of lead and copper in Avicennia marina and Rhizophora apiculata from Balok mangrove forest, Pahang, Malaysia. Sains Malaysiana, 40(6): 555-560.

11.    Wu, S., Feng, X. and Wittmeier, A. (1997). Microwave digestion of plant grain reference materials in nitric acid or mixture of nitric acid and hydrogen peroxide for the determination of multi-elements by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 12: 797-806.

12.    Ramos, S. C. A., da Silva, A. P. and de Oliveira. S. R. (2006). Concentration, stock and transport rate of heavy metals in a tropical red mangrove, Natal, Brazil. Marine Chemistry, 99: 2-11.

13.    Teiz, L. and Zeiger, R. (1991). Plant physicology. The Benjamin-Cumming Publishing Company, Redwood City, CA, USA: pp. 565.

14.    Qiu, Y. W., Yu, K. F., Zhang, G. and Wang, W. X. (2011). Accumulation and partitioning of seven trace elements in mangroves and sediment cores from three estuarine wetlands of Hanan Island, China. Journal of Hazardous Materials, 190: 631-638.

15.    MacFarlane, G. R., Pulkownik, A. and Burchett M. D. (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk.) Vierh: Biological indication potential. Environmental Pollution, 123: 139-151.

16.    Glenn, E. P., Brown, J. J. and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Journal of Critical Review of Plant Sciences, 18: 227-255.

17.    Khalil, N. A., Al-Murshidy, W. A., Eman, A. M. and Badawy, R. A. (2015). Effect of plant density and calcium nutrition on growth and yield of some faba bean varieties under saline condition. Journal of International Scientific Publications, 3: 440-450.

18.    Hsiao, T. C. and Lauchli, A. (1986). Role of potassium in plant-water relation. Advanced Plant Nutrition, 2: 28-31.

19.    Leigh, R. A. and Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 97: 1-13.

20.    Downton, W. J. S. (1982). Growth and osmotic relations of the mangrove Avicennia marina, as influenced by salinity. Functional Plant Biology, 9(5): 519-528.

21.    Reef, R., Feller, I. C. and Lovelock, C. E. (2010). Nutrition of mangroves. Tree Physiology, 30(9): 1148-1160.

22.    Chowdhury, R., Favas, P. J C., Pratas, J., Jonathan, M. P., Ganesh, P. S. and Sarkar, S. K. (2015). Accumulation of trace element by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. International Journal of Phytoremediation, 17(9): 885-894.

23.    Jones, J. B., Wolf, B. and Mills, H. A. (1991). Plant analysis handbook: A practical sampling, preparation, analysis and interpretation guide. Micro and Macro Publishing, New York.

24.    Kathiresan, K., Saravanankumar, K. and Mullai, P. (2014). Bioaccumulation of trace elements by Avicennia marina. Journal of Coastal Life Medicine, 2(11): 888-894.

25.    Shaw, A. J. (1990). Heavy metal tolerance in plant: Evolutionary Aspects. CRC Press, Florida.

26.    Anikwe, M. N. and Nwobodo, K. C. A. (2002). Long-term effect of municipal waste disposal on soil properties and productivity of sites used for urban agriculture in Abakaliki, Nigeria. Bioresources Technology, 83: 241-250.

27.    Abohassan, R. A. (2013). Heavy metal pollution in Avicennia marina mangrove system on the Red Sea Coast of Saudi Arabia. Journal of King Abdulaziz University; Meteorology, Environment and Arid Land Agriculture Science, 24: 35-53.

28.    Alloway, B. J. (1995) Soil processes and the behaviour of metals. In: Alloway BJ (ed). Heavy metals in soils. Blackie Academic and Professional, New York: pp. 11-50.

29.    Bodin, N., Gom-Kâ, R., Thiaw, O. T., Tito de Morais, L., Le Locˊh, F. and Rozuel-Chartier, E. (2013). Assessment of trace metal contamination in mangrove ecosystem from Senegal, West Africa. Chemosphere, 90: 50-57.

30.    Usman, A. R. A., Alkredaa, R. S. and Wabel, M. I. A. (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicology and Environmental Safety, 97: 263-270.

31.    Wang, Y., Qiu, Q., Xin, G., Yang, Z., Zheng J., Ye, Z. and Li, S. (2013). Heavy metal contamination in a vulnerable mangrove swamp in South China. Environmental Monitoring Assessment, 185(7): 5775-5787.

32.    Yu, R. L., Hu, G. R., Zhang, W. F. and Liu B. X. (2015). Accumulation and transfer of heavy metals in the mangroves from Quanzhou Bay Wetland, South East Coast of China. Journal of Residuals Science & Technology, 12: 79-83.

33.    Nirmal Kumar, I. J., Sajish, P. R., Nirmal Kumar, R., Basil, G. and Shailendra, V. (2011). An assessment of the accumulation potential of Pb, Zn and Cd by Avicennia marina (Forssk.) Vierh. in Vamleshwar Mangroves, Gujarat, India. Notulae Scientia Biologicae, 3(1): 36-40.

 




Previous                    Content                    Next