Malaysian Journal of Analytical Sciences Vol 22 No 2
(2018): 326 - 332
DOI:
10.17576/mjas-2018-2202-19
CHARACTERISTICS
OF RICE HUSK BIOCHAR BLENDED WITH COAL FLY ASH FOR POTENTIAL SORPTION MATERIAL
(Ciri-Ciri
Gabungan Biochar dari Sekam Padi dengan Abu Terbang Arang Batu Sebagai Potensi
Bahan Penjerab)
Nurul Farhana Ahmad1, Azil Bahari Alias1*, Norhayati Talib1, Zulkifli Abd Rashid 1, Wan Azlina Wan Ab Karim Ghani2
1Faculty of
Chemical Engineering,
Universiti Teknologi MARA, 40450 Shah
Alam, Selangor Darul Ehsan, Malaysia
2Department of
Chemical and Environmental Engineering,
Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
*Corresponding
author: azilbahari@salam.uitm.edu.my
Received: 15
February 2017; Accepted: 2 January 2018
Abstract
Biochar has received a great
attention recently due to abundant biomass left in Malaysia. Besides that, the
application of biochar in environmental aspects widely used in the world to
improvise soil fertility and water quality. In this research, biochar is
produced from rice husk (RH) by pyrolysis at 500 °C using fixed-bed tube
reactor. Then the biochar will be blended with coal fly ash (CFA) using the
ratio of rice husk biochar (RHB) to CFA (0.2:0.8, 0.5:0.5, and 0.8:0.2) to be
further analyzed on their characteristics. From proximate analysis, the ash
content is increasing while moisture content, volatile matter, and fixed carbon
decrease as the ratio are decrease. For determination of carbon, hydrogen,
oxygen, nitrogen and sulphur, the result from ultimate analysis indicates that
hydrogen, carbon and nitrogen increase as the ratio increases. Based on the BET
result, the surface area is increase proportionally to the ratio (0.2:0.8,
0.5:0.5, 0.8:0.2). Based on this research, RHB has a great potential to be
applied as an adsorbent. However, blended RH with CFA are not giving desire
result to be used an adsorbent. It is believed that introduction of CFA will offer some magnetic effect to the
sorbant to attract pollutants.
Keywords: biochar, biomass, coal fly ash, pyrolysis,
rice husk
Abstrak
Biochar telah diberi perhatian
besar baru-baru ini disebabkan kuantiti biojisim terbuang ini yang amat banyak
di Malaysia. Selain itu, biochar ini banyak digunakan di dalam aspek alam
sekitar iaitu secara meluas untuk penambahbaikkan kesuburan tanah dan kualiti
air. Dalam penyelidikan ini, biochar dihasilkan dari sekam padi (RH) oleh
proses pirolisis pada 500 °C menggunakan reaktor tiub lapisan tetap. Kemudian
biochar akan dicampurkan dengan abu terbang (CFA) batu arang menggunakan nisbah
sekam padi biochar (RHB) kepada CFA (0.2:0.8, 0.5:0.5 dan 0.8:0.2) seterusnya
dianalisis ciri-ciri mereka. Dari analisis proksimat, kandungan abu bertambah
manakala kandungan lembapan, jirim meruap dan karbon tetap berkurang dengan
pengurangan nisbah RHB kepada CFA. Untuk nilai karbon, hidrogen, oksigen,
nitrogen dan sulfur, keputusan dari analisis muktamad menunjukkan kadar hidrogen,
karbon dan nitrogen dan sulfur meningkat dengan peningkatan nisbah RHB kepada
CFA. Berdasarkan keputusan BET, luas permukaan meningkat secara berkadaran
kepada nisbah (0.2:0.8, 0.5:0.5, 0.8:0.2) RHB kepada CFA. Berdasarkan
penyelidikan ini, RHB mempunyai potensi besar untuk digunakan sebagai satu
bahan penjerap. Walaubagaimanapun, dengan mencampurkan RH dengan CFA tidak
memberi keputusan positif untuk diguna pakai sebagai bahan penjerap. Penambahan
CFA dipercayai akan memberi kesan magnet kepada bahan penjerab bagi menarik
bahan pencemar.
Kata kunci: biochar, biojisim,
abu terbang arang batu, pirolisis, sekam padi
References
1.
Mekhilef, S., Saidur, R. and Mustaffa, W. E. S. B.
(2011). Biomass energy in Malaysia: Current state and prospects. Renewable and Sustainable Energy Reviews,
15(7): 3360-3370.
2.
Moghtaderi, B., Meesri, C. and Wall, T. F. (2004).
Pyrolytic characteristics of blended coal and woody biomass. Fuel, 83(6), 745-750.
3.
Frederik, R., Sven, V., Dane, D. and Wolter, P. (2013).
Production and characterization of slow pyrolysis biochar: Influence of
feedsstock type and pyrolysis conditions, GCB
Bioenergy, 5: 104-115,
4.
Windeatt, J. H., Ross, A. B., Williams, P. T., Forster,
P. M., Nahil, M. A. and Singh, S. (2014). Characteristics of biochars from crop
residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146:
189-197.
5.
Mahmoud, D. K., Salleh, M. A. M., Karim, W. A. W. A.,
Idris, A. and Abidin, Z. Z. (2012). Batch adsorption of basic dye using acid
treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 181,
449-457.
6.
Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P. and Cross,
A. (2013). The effect of pyrolysis conditions on biochar stability as
determined by three methods. GCB
Bioenergy, 5(2), 122-131.
7.
Kizito, S., Wu, S., Kirui, W. K., Lei, M., Lu, Q., Bah,
H. and Dong, R. (2015). Evaluation of slow pyrolyzed wood and rice husks
biochar for adsorption of ammonium nitrogen from piggery manure anaerobic
digestate slurry. Science of the Total
Environment, 505: 102-112.
8.
Masto, R. E., Ansari, M. A., George, J., Selvi, V. A.
and Ram, L. C. (2013). Co-application of biochar and lignite fly ash on soil
nutrients and biological parameters at different crop growth stages of Zea
mays. Ecological Engineering, 58:
314-322.
9.
Claoston, N., Samsuri, A. W., Ahmad Husni, M. H. and Mohd
Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical
properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4): 331-339.
10.
Ronsse, F., Van Hecke, S., Dickinson, D., & Prins,
W. (2013). Production and characterization of slow pyrolysis biochar: influence
of feedstock type and pyrolysis conditions. GCB
Bioenergy, 5(2): 104-115.