Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 318 - 325

DOI: 10.17576/mjas-2018-2202-18

 

 

 

Granulation of Mefenamic Acid and Poly-Ethylene Glycol (PEG) using Pressure Swing Granulation (PSG) Technique in Fluidized Bed

 

(Pembentukan Granul Berasaskan Asid Mefenamik dan Polietilena Glikol (PEG)  Menggunakan Teknik Pengranulan Tekanan Terayun dalam Turus Terbendalir)

 

Salinda Ab Ghani 1, Noor Fitrah Abu Bakar 1*, Mohd Rushdi Abu Bakar 2, Yus Aniza Yusof 3, Norazah Abd Rahman1

 

1Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Pharmaceutical Technology, Kulliyyah of Pharmacy,

International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Department of Process and Food Engineering, Faculty of Engineering,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author:  fitrah@salam.uitm.edu.my

 

 

Received: 15 February 2017; Accepted: 2 January 2018

 

 

Abstract

Granulation of mefenamic acid particles was conducted to produce spherical shape, narrow size distribution of granules, high granule strength and good content uniformity by using Pressure Swing Granulation (PSG) technique in a fluidized bed. Two types (binderless and with binder) of granules namely lactose-mefenamic acid (MA) and lactose-polyethylene glycol (PEG)-(MA) with mass ratio of 30:70 and 25:5:70 were produced respectively. The later type of granules was heated for 80 ˚C, above the PEG melting point. Results indicated that all granules were uniform, spherical and narrow size distribution with the average granules size was less than 500 μm. The tensile strength of the lactose-PEG-MA was higher than the lactose-MA due to heating process. The tensile strength of lactose-PEG-MA and lactose-MA with average granules size of 500 μm were 0.42 MPa and 0.33 MPa, respectively. The drug contents in both types of granules were uniform i.e. around    70 ± 0.3 wt.%.

 

Keywords:  mefenamic acid, lactose, polyethylene glycol, pressure swing granulation

 

Abstrak

Pembentukan granul zarah asid mefenamik telah dijalankan untuk menghasilkan bentuk bulat, taburan saiz granul yang kecil, kekuatan granul dan keseragaman kandungan yang baik dengan menggunakan teknik pengranulan terbendalir (PSG). Dua jenis granul (tanpa perekat dan dengan perekat) iaitu laktosa-asid mefenamik (MA) dan laktosa-polietilena glikol (PEG)-(MA) dengan nisbah jisim masing-masing adalah 30:70 dan 25:5:70. Granul kemudian dipanaskan pada 80 °C, melebihi takat lebur PEG. Keputusan menunjukkan bahawa semua granul yang terhasil adalah seragam, taburan saiz granul adalah sempit dengan saiz purata granul adalah kurang daripada 500 µm. Kekuatan tegangan laktosa-PEG-MA adalah lebih tinggi daripada laktosa-MA disebabkan oleh proses pemanasan semasa pengranulan. Kekuatan tegangan laktosa PEG-MA dan laktosa-MA dengan saiz granul purata 500 mikron masing-masing adalah 0.42 MPa dan 0.33 MPa. Kandungan MA dalam kedua-dua jenis granul adalah seragam iaitu sekitar peratusan jisim 70 ± 0.3 wt.%.

 

Kata kunci:  acid mefenamik, laktosa, polietilena glikol, pengranulan tekanan terayun

 

References

1.       Jivraj, M., Martini, L. G. and Thomson, C.M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science and Technology Today, 3: 58-63.

2.       Yang, J., Sliva, A., Banerjee, A., Dave, R. and Pfeffer, R. (2005). Dry particle coating for improving the flowability of cohesive powders. Powder Technology, 158: 21-33.

3.       Martindale (1998). The extra pharmacopeia. The Pharmaceutical Press, London, 31th edition: pp. 58-59.

4.       Hezave, A. Z., Khademi, M. H. and Esmaelizadeh, F. (2012). Measurement and modelling of mefenamic acid solubility in supercritical carbon dioxide. Fluid Phase Equilibria, 313: 140-147.

5.       James E. F. R. and Anne B. P. (1982). The extra pharmacopeia. The Pharmaceutical Press, London, 28th edition: pp. 262-263.

6.       Abu Bakar, N. F., Mujumdar, A., Urabe, S., Takano, K., Nishii, K. and Horio, M. (2007). Improvement of sticking tendency of granules during tabletting process by pressure swing granulation. Powder Technology, 176: 137-147.

7.       Abdel-Hamid, S., Alshihabi, F. and Betz, G. (2011). Investigating the effect of particle size and shape on high speed  tabletting  through  radial die-wall pressure monitoring. International Journal of Pharmaceutics, 413: 29-35.

8.       Leuenberger, H., Puchkov, M., Krausbauer, E. and Betz, G. (2009). Manufacturing pharmaceutical granules: is the granulation end-point a myth?. Powder Technology, 189: 141-148.

9.       Gentis, N. D. and Betz, G. (2012). Compressibility of binary powder formulations: Investigation and evaluation with compaction equations. Journal of Pharmaceutical Sciences, 101: 777–793.

10.    Siiriä, S. M, Antikainen, O., Heinämäki. J. and Yliruusi, J. (2011). 3D simulation of internal tablet strength during tabletin. AAPS PharmSciTech, 12: 593-603.

11.    Lin, X., Chyi, C. W., Ruan, K. F., Feng, Y. and Heng, P. W. (2011). Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers. Europe Journal Pharmacy Biopharm, 79: 406–415.

12.    Adam, A., Schrimpl, L. and Schmidt, P. C. (2000). Some physicochemical properties of mefenamic acid. Drug Development and Industrial Pharmacy, 26(5): 477–487.

13.    Takano, K., Nishii, K., Mukoyama, A., Iwadate, Y., Kamiya, H. and Horio, M. (2002). Binderless granulation of pharmaceutical lactose powders. Powder Technology, 122: 212-221.

14.    Nishii, K., Itoh, Y., Kawakami, N. and Horio, M. (1993). Pressure swing granulation, a novel binderless granulation by cyclic fluidization and gas flow compaction. Powder Technology, 74: 1-6.

15.    Hiramatsu, Y. and Oka, Y. (1966). Determination of the tensile strength of rock by a compression  test of an irregular test piece. International Journal of Rock Mechanics and Mining Science, 3: 89-90.

16.    Takano, K., Maruyama, N., Mukoyama, A., Nishii, K., Kamiya, H. and Horio, M. (2003). Fluidized bed binderless granulation of hydrophobic drugs with fine lactose powder. Advanced Powder Technology,14(3): 369-381.

17.    Shu-hua, D., Feng-man, S. and Ai-bing, Y. (2008). Granule size distribution and porosity of granule packing. Journal of Iron and Steel Research,15(5): 1-5.

18.    Abu Bakar, N. F., Anzai, R. and Horio, M. (2009). Direct measurement of particle-particle interaction using micro particle interaction analyzer (MPIA). Advanced Powder Technology, 20(5): 455-463

19.    Horio, M., Mukouyama, A., Maruyama, M., Takano, K. and Nishii, K. (2001). The mechanism of fluidized bed dry granulation of fine powders. Fluidization, 10: 485-491.

20.    Abu Bakar, N. F., Anzai, R. and Horio, M. (2013). Microscopic evaluation of binderless granulation in a pressure swing granulation fluidized bedChemical Engineering Science, 98: 51-58/

21.    Zolkepali, N. K., Abu bakar, N. F., Naim, M. N., Anuar, N., Kamalul Aripin, N. F., Abu Bakar, M. R., Lenggoro, I. W. and Kamiya, H. (2016). Formation of fine and encapsulated mefenamic acid form I particles for dissolution improvement via electrospray method. Particulate Science and Technology, 36(3): 298-307.

22.    Zolkepali, N. K., Abu Bakar, N. F., Naim, M. N., Anuar, N. and Abu Bakar, M. R. (2014). Nanoparticle preparation of mefenamic acid by electrospray drying. AIP Conference Proceedings, 1586: 113-118

 




Previous                    Content                    Next