Malaysian Journal of Analytical Sciences Vol 22
No 2 (2018): 318 - 325
DOI:
10.17576/mjas-2018-2202-18
Granulation of Mefenamic Acid and
Poly-Ethylene Glycol (PEG) using Pressure Swing Granulation (PSG) Technique in
Fluidized Bed
(Pembentukan
Granul Berasaskan Asid Mefenamik dan Polietilena Glikol (PEG) Menggunakan Teknik Pengranulan Tekanan
Terayun dalam Turus Terbendalir)
Salinda Ab Ghani 1, Noor Fitrah Abu Bakar
1*, Mohd Rushdi Abu Bakar 2, Yus Aniza Yusof 3, Norazah Abd Rahman1
1Faculty of
Chemical Engineering,
Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2Department of
Pharmaceutical Technology, Kulliyyah of Pharmacy,
International Islamic University
Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
3Department of
Process and Food Engineering, Faculty of Engineering,
Universiti Putra Malaysia, 43400
Serdang, Selangor, Malaysia
*Corresponding
author: fitrah@salam.uitm.edu.my
Received: 15
February 2017; Accepted: 2 January 2018
Abstract
Granulation of mefenamic acid particles
was conducted to produce spherical shape, narrow size distribution of granules,
high granule strength and good content uniformity by using Pressure Swing
Granulation (PSG) technique in a fluidized bed. Two types (binderless and with
binder) of granules namely lactose-mefenamic acid (MA) and lactose-polyethylene
glycol (PEG)-(MA) with mass ratio of 30:70 and 25:5:70 were produced
respectively. The later type of granules was heated for 80 ˚C, above the PEG melting point. Results indicated that all granules were uniform, spherical and narrow size distribution with the
average granules size was less than 500 μm. The tensile
strength of the lactose-PEG-MA was higher than the lactose-MA due to heating
process. The tensile strength of lactose-PEG-MA and lactose-MA
with average granules size of 500 μm
were 0.42 MPa and 0.33 MPa, respectively. The drug contents in both types of granules were uniform i.e. around 70 ± 0.3 wt.%.
Keywords: mefenamic acid, lactose, polyethylene glycol,
pressure swing granulation
Abstrak
Pembentukan granul zarah asid mefenamik
telah dijalankan untuk menghasilkan bentuk bulat, taburan saiz granul yang
kecil, kekuatan granul dan keseragaman kandungan yang baik dengan menggunakan
teknik pengranulan terbendalir (PSG). Dua jenis granul (tanpa perekat dan
dengan perekat) iaitu laktosa-asid mefenamik (MA) dan laktosa-polietilena glikol
(PEG)-(MA) dengan nisbah jisim masing-masing adalah 30:70 dan 25:5:70. Granul kemudian
dipanaskan pada 80 °C, melebihi takat lebur PEG. Keputusan menunjukkan bahawa
semua granul yang terhasil adalah seragam, taburan saiz granul adalah sempit
dengan saiz purata granul adalah kurang daripada 500 µm. Kekuatan tegangan
laktosa-PEG-MA adalah lebih tinggi daripada laktosa-MA disebabkan oleh proses
pemanasan semasa pengranulan. Kekuatan tegangan laktosa PEG-MA dan laktosa-MA
dengan saiz granul purata 500 mikron masing-masing adalah 0.42 MPa dan 0.33
MPa. Kandungan MA dalam kedua-dua jenis granul adalah seragam iaitu sekitar
peratusan jisim 70 ± 0.3 wt.%.
Kata
kunci:
acid mefenamik, laktosa, polietilena glikol,
pengranulan tekanan terayun
References
1. Jivraj, M., Martini,
L. G. and Thomson, C.M. (2000). An overview of the different excipients useful
for the direct compression of tablets. Pharmaceutical
Science and Technology Today, 3: 58-63.
2. Yang, J., Sliva,
A., Banerjee, A., Dave, R. and Pfeffer, R. (2005). Dry particle coating for
improving the flowability of cohesive powders. Powder Technology, 158: 21-33.
3. Martindale (1998).
The extra pharmacopeia. The
Pharmaceutical Press, London, 31th edition: pp. 58-59.
4. Hezave, A. Z., Khademi,
M. H. and Esmaelizadeh, F. (2012). Measurement and modelling of mefenamic acid
solubility in supercritical carbon dioxide. Fluid
Phase Equilibria, 313: 140-147.
5. James E. F. R. and Anne B. P. (1982). The extra
pharmacopeia. The Pharmaceutical
Press, London, 28th
edition: pp. 262-263.
6. Abu Bakar, N. F.,
Mujumdar, A., Urabe, S., Takano, K., Nishii, K. and Horio, M. (2007).
Improvement of sticking tendency of granules during tabletting process by
pressure swing granulation. Powder
Technology, 176: 137-147.
7. Abdel-Hamid, S.,
Alshihabi, F. and Betz, G. (2011). Investigating the effect of particle size
and shape on high speed tabletting through radial die-wall pressure monitoring. International Journal of Pharmaceutics,
413: 29-35.
8. Leuenberger, H.,
Puchkov, M., Krausbauer, E. and Betz, G. (2009). Manufacturing pharmaceutical
granules: is the granulation end-point a myth?. Powder Technology, 189: 141-148.
9. Gentis, N. D. and Betz, G. (2012). Compressibility of binary powder
formulations: Investigation and evaluation with compaction equations. Journal of Pharmaceutical Sciences, 101:
777–793.
10. Siiriä, S. M, Antikainen, O., Heinämäki. J. and Yliruusi, J. (2011). 3D simulation of internal tablet strength during
tabletin. AAPS PharmSciTech, 12: 593-603.
11. Lin, X., Chyi, C. W., Ruan, K. F., Feng, Y. and Heng, P. W. (2011).
Development of potential novel cushioning agents for the compaction of coated
multi-particulates by co-processing micronized lactose with polymers. Europe Journal Pharmacy Biopharm, 79:
406–415.
12. Adam, A., Schrimpl, L. and Schmidt, P. C. (2000). Some physicochemical properties of mefenamic acid. Drug Development and Industrial Pharmacy,
26(5): 477–487.
13.
Takano, K., Nishii, K., Mukoyama, A., Iwadate, Y., Kamiya, H. and
Horio, M. (2002). Binderless granulation of pharmaceutical lactose
powders. Powder Technology, 122:
212-221.
14. Nishii, K., Itoh, Y., Kawakami, N. and Horio, M.
(1993). Pressure swing granulation, a novel binderless granulation by cyclic
fluidization and gas flow compaction. Powder Technology, 74: 1-6.
15. Hiramatsu, Y. and Oka,
Y. (1966). Determination of the tensile strength of rock by a compression test of an irregular test piece. International Journal of Rock Mechanics and
Mining Science, 3: 89-90.
16. Takano, K.,
Maruyama, N., Mukoyama, A., Nishii, K., Kamiya, H. and Horio, M. (2003).
Fluidized bed binderless granulation of hydrophobic drugs with fine lactose
powder. Advanced Powder Technology,14(3):
369-381.
17. Shu-hua, D., Feng-man, S. and Ai-bing, Y. (2008).
Granule size distribution and porosity of granule packing. Journal of Iron
and Steel Research,15(5): 1-5.
18. Abu Bakar, N. F.,
Anzai, R. and Horio, M. (2009). Direct measurement of
particle-particle interaction using micro particle interaction analyzer (MPIA). Advanced Powder Technology, 20(5): 455-463
19. Horio, M., Mukouyama, A., Maruyama, M., Takano, K. and
Nishii, K. (2001). The mechanism of fluidized bed dry granulation of fine
powders. Fluidization, 10: 485-491.
20. Abu Bakar, N. F., Anzai, R. and Horio, M. (2013). Microscopic evaluation of binderless granulation in a pressure swing
granulation fluidized bed. Chemical Engineering Science, 98: 51-58/
21. Zolkepali, N. K., Abu bakar, N. F., Naim, M. N., Anuar, N., Kamalul Aripin, N. F., Abu Bakar,
M. R., Lenggoro, I. W. and Kamiya, H. (2016). Formation of
fine and encapsulated mefenamic acid form I particles for dissolution
improvement via electrospray method. Particulate Science and
Technology, 36(3): 298-307.
22. Zolkepali, N. K., Abu Bakar, N. F., Naim, M. N., Anuar, N. and Abu Bakar, M. R. (2014).
Nanoparticle preparation of mefenamic acid by electrospray drying. AIP Conference Proceedings, 1586: 113-118