Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 128 - 135

DOI: 10.17576/mjas-2018-2201-16

 

 

 

SEPARATION OF Pb(II) FROM WASTEWATER USING UNTREATED COCONUT (Cocos nucifera) FROND POWDER

 

(Pengasingan Pb(II) daripada Air Buangan Menggunakan Serbuk Pelepah Kelapa (Cocos nucifera) yang Tidak Dirawat

 

Nur Fatin Adlina Mohd Fouzi, Mardhiah Ismail*, Zurhana Mat Hussin, Sarah Laila Mohd Jan

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  marismael@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

The adsorption of Pb(II) ion from wastewater by coconut frond powder was evaluated in the batch adsorption process. Characteristic of the coconut frond powder (CFP) was determined by performing a pHzpc analysis and also infra-red spectroscopy analysis for the investigation of the functional group on CFP surface. The batch adsorption study was carried out using five parameters including the effect of pH, the effect of adsorbent dosage, the effect of initial concentration and contact time, the kinetic and isotherm study. The optimum dosage used in this study was 0.0.4 g while the optimum pH for the adsorption of lead ions was pH 4. The adsorption capacities depended on lead concentration and contact time. It required a relatively short period of time to reach an equilibrium which is less than 60 minutes. Two kinetics models; pseudo first order and pseudo second order were used to analyze the lead adsorption process. Pseudo second order model was found to fit well enough the experimental data compared to pseudo first order.

 

Keywords:  adsorption, Cocos nucifera, kinetic, lead

 

Abstrak

Penjerapan Pb(II) ion daripada sisa air oleh serbuk pelepah kelapa telah dinilai menggunakan proses penjerapan secara berkelompok. Ciri-ciri serbuk pelepah kelapa (CFP) telah ditentukan dengan menjalankan analisa pHzpc dan juga spektroskopi infra-merah untuk mengkaji kumpulan-kumpulan berfungsi pada permukaan CFP. Kajian penjerapan berkelompok telah dijalankan dengan menilai lima parameter termasuk kesan pH, kesan dos penjerap, kesan kepekatan awal dan masa penjerapan, kajian kinetic dan kajian isoterma. Dos penjerap yang optimum diperolehi adalah 0.04 g sementara pH optima adalah pH 4. Kapasiti penjerapan bergantung kepada kepekatan larutan plumbum dan masa tindak balas. Proses penjerapan memerlukan masa yang pendek untuk mencapai keseimbangan iaitu kurang daripada 60 minit. Dua model kinetik; pseudo peringkat pertama dan pseudo peringkat kedua telah digunakan untuk menilai proses penjerapan plumbum. Model pseudo peringkat kedua didapati lebih sesuai untuk membincangkan data kinetic berbanding model pseudo peringkat pertama.

 

Kata kunci:  penjerapan, Cocos nucifera, kinetik, plumbum

 

References

1.       Nguyen, T. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q. and Nguyen, T. V. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, 148: 574–85.

2.       Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1): 63–65.

3.       Duruibe, J. O., Ogwuegbu, M. O. C. and Egwurugwu, J. N. (2001). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5): 112–118.

4.       Jalali Heravi M. and Sereshti, H. (2007). Determination of essential oil components of Artemisia haussknechtii Boiss. using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. Journal of Chromatography A, 1160(1): 81–9.

5.       Li, Q., Chai, L., Yang, Z. and Wang, Q. (2009). Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions. Applied Surface Science, 255 (7): 4298–4303.

6.       Saeed, A., Akhter, M. W. and Iqbal, M. (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45(1): 25–31.

7.       Hameed, B. and Ahmad, A. (2009). Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials, 164: 870–875.

8.       Deng, H., Lu, J., Li, G., Zhang, G. and Wang, X. (2011)  Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chemical Engineering Journal, 172 (1): 326–334.

9.       Ertaş, M., Acemioğlu, B., Alma, M. and Usta, M.  (2010).  Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. Journal of Hazardous Materials, 183: 421–427.

10.    Gaballah, I. and Kilbertus, G. (1998). Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. Journal of Geochemical Exploration, 62 (1–3): 241–286.

11.    Nakajima, A.and Sakaguchi, T. (1990). Recovery and removal of uranium by using plant wastes. Biomass, 21(1): 55–63.

12.    Fatombi, J. K., Lartiges, B., Aminou, T., Barres, O. and Caillet, C. (2013). A natural coagulant protein from copra (Cocos nucifera): Isolation, characterization, and potential for water purification. Separation and Purification Technology, 116: 35–40.

13.    Bhatnagar, A. and Sillanpää, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chemical Engineering Journal, 157(2–3): 277–296.

14.    Njoku, V. O., Islam, M. A., Asif, M. and Hameed, B. H. (2014). Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. Journal of Analytical and Applied Pyrolysis, 110(1): 172–180.

15.    Ismail, M., Megat Hanafiah, M. A. K., Zainal Abidin, M. S., Mat Hussin, Z. and Khalid, K. (2015)  Kinetics of methylene blue adsorption on sulphuric acid treated coconut (Cocos nucifiera) frond powder. American Journal of Engineering and Applied Sciences, 5(3): 33-37

16.    Balistrieri, L. and Murray, J. W. (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. American Journal of Science, 281(6): 788–806,.

17.    Mwangi, I. W. and Ngila, J. C. (2012). Removal of heavy metals from contaminated water using ethylenediamine-modified green seaweed (Caulerpa serrulata). Physics and Chemistry of the Earth, 50–52: 111–120.

18.    Khambhaty, Y., Mody, K., Basha, S. and Jha, B. (2009). Biosorption of Cr(VI) onto marine Aspergillus niger: Experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25(8): 1413–1421.

19.    Ncibi, M. C., Mahjoub, B. and Seffen, M. (2007). Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres.  Journal of Hazardous Materials, 139(2): 280–285.

20.    Lee, S. H., Shon, J. S., Chung, H., Lee, M.-Y. and Yang, J.-W. (1999). Effect of chemical modification of carboxyl groups in apple residues on metal ion binding. Korean Journal of Chemical Engineering, 16(5): 576–580.

21.    Vijayaraghavan, K., Palanivelu, K. and Velan, M. (2006). Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresource Technology, 97(12): 1411–1419.

22.    Bhattacharyya, K. G. and Gupta, S. S. (2006). Adsorption of chromium (VI) from water by clays. Industrial & Engineering Chemistry Research, 45: 7232–7240.

23.    Kumar, P. S. and Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. Journal of Engineering Science and Technology, 4(4): 351–363.

24.    Momčilović, M., Purenović, M.,  Bojić, A., Zarubica, A. and Ranđelović, M. (2011). Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276 (1–3): 53–59.

 

 




Previous                    Content                    Next