Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1235 - 1242

DOI: 10.17576/mjas-2017-2106-04

 

 

 

ENCAPSULATION OF GADOLINIUM NANOPARTICLES IN AMINO ACID BASED VESICLES

 

(Pengkapsulan Nanozarah Gadolinium ke dalam Vesikel Berasaskan Asid Amino)

 

Muhammad Zul Azri Muhammad Jamil, Faizal Mohamed*, Nur Ratasha Alia Md. Rosli, Irman Abdul Rahman

 

Nuclear Science Programme, School of Applied Physics,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  faizalm@ukm.edu.my

 

 

Received: 18 April 2017; Accepted: 12 September 2017

 

 

Abstract

Production of amino acid based vesicles using sonication method was employed to determine its encapsulation efficacy towards gadolinium(III) nanoparticles as potential drug carrier. The sonication process involved precursor namely sodium N-lauroylsarcosinate hydrate with 1-decanol to produce vesicle in 92 wt.% of water. Gadolinium(III) nanoparticle was then encapsulated into the vesicle system. The structure of Gd2O2CO3 nanoparticles was confirmed by X-ray Diffraction technique (XRD). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy indicates the presence of bonding that formed the vesicles. The size distribution of the obtained gadolinium encapsulated vesicle was examined using Transmission Electron Microscopy (TEM). It has been proven to be a potential nano-sized drug carrier.

 

Keywords:  vesicles, encapsulation, gadolinium, sonication, drug carrier

 

Abstrak

Penghasilan vesikel berasaskan asid amino menggunakan kaedah sonikasi telah digunakan dalam menentukan pengkapsulan nanozarah gadolinium(III) yang berpotensi sebagai pembawa dadah. Proses sonikasi melibatkan prekursor natrium N-lauroylsarkosinat hidrat dengan 1-dekanol untuk menghasilkan vesikel dalam 92 wt.% air. Nanozarah gadolinium(III) kemudiannya dikapsulkan ke dalam sistem vesikel. Struktur nanozarah Gd2O2CO3 telah disahkan menggunakan teknik pembelauan sinar-X (XRD). Spektroskopi transformasi infra merah Fourier (ATR-FTIR) menunjukkan kehadiran ikatan yang terbentuk ke atas vesikel. Taburan saiz yang nanozarah gadolinium terkapsul ke dalam vesikel dilihat menggunakan mikroskop elektron trasmisi (TEM). Ia telah terbukti berpotensi sebagai pembawa dadah bersaiz nano.

 

Kata kunci:  vesikel, pengkapsulan, gadolinium, sonikasi, pembawa dadah

 

References

1.       Hall, J. B., Dobrovolskaia, M. A., Patri, A. K. and McNeil, S. E. (2007). Characterization of nanoparticles for therapeutics. Future Medicine, 2(6): 789 - 803.

2.       Cheow, W. S. and Hadinoto, K. (2011). Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces, 85(2): 214 - 220.

3.       Lussier, J. N., Klemer, D. R., Hawthorn, P. S. and Sobottke, M. D. (1995). Gadolinium vanadate laser. U.S. Patent No. 5,420,876.

4.       Kleinlogel, C. and Gauckler, L. (2000). Mixed electronic-ionic conductivity of cobalt doped cerium gadolinium oxide. Journal of Electroceramics, 5(3): 231 - 243.

5.       Sondermann, T. (1981). Method for manufacturing gadolinium-containing nuclear fuels. U.S. Patent No. 4,278,560.

6.       Bernhard, E. J., Mitchell, J. B., Deen, D., Cardell, M., Rosenthal, D. I. and Brown, J. M. (2000). Re-evaluating gadolinium(III) texaphyrin as a radiosensitizing agent. Cancer Research, 60(1): 86 - 91.

7.       Aisen, A. M., Martel, W., Braunstein, E. M., McMillin, K. I., Phillips, W. A. and Kling, T. (1986). MRI and CT evaluation of primary bone and soft-tissue tumors. American Journal of Roentgenology, 146(4): 749 - 756.

8.       Park, J.-A., Kim, H.-K., Kim, J.-H., Jeong, S.-W., Jung, J.-C., Lee, G.-H. and Kim, T.-J. (2010). Gold nanoparticles functionalized by gadolinium–DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorganic & Medicinal Chemistry Letters, 20(7): 2287 - 2291.

9.       Lux, F., Sancey, L., Bianchi, A., Crémillieux, Y., Roux, S. and Tillement, O. (2015). Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine, 10(11): 1801 - 1815.

10.    Szoka Jr, F. and Papahadjopoulos, D. (1980). Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual Review of Biophysics and Bioengineering, 9(1): 467 - 508.

11.    Zhu, T. F. and Szostak, J. W. (2011). Exploding vesicles. Journal of Systems Chemistry, 2(1): 4 - 10.

12.    Sankar, V., Ruckmani, K., Jailani, S., Ganesan, K. S. and Sharavanan, S. (2009). Niosome drug delivery system: Advances and medical applications an overview. Pharmacol Online, 2: 926 - 932.

13.    Rosli, M., Alia, N. R., Mohamed, F. K. K., Sah, M., Syafiq, M. A. and Rahman, I. A. (2014). Effect of gamma radiation on amino acid based vesicle carrying radiosensitizer. Malaysian Journal of Analytical Sciences, 18(3): 555 - 561.

14.    Cevc, G. (2004). Lipid vesicles and other colloids as drug carriers on the skin. Advanced Drug Delivery Reviews, 56(5): 675 - 711.

15.    Akter, N., Mohamed, F., Radiman, S. and Reza, M. I. (2012). Vesicles and lamella: Outcome of the changing formation path of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system. Nature Precedings, 2012: 1 - 18.

16.    Yamamoto, S., Maruyama, Y. and Hyodo, S. A. (2002). Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. The Journal of Chemical Physics, 116(13): 5842 - 5849.

17.    Lim, S.-F., Zheng, Y.-M., Zou, S.-W. and Chen, J. P. (2008). Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology, 42(7): 2551 - 2556.

 

 




Previous                    Content                    Next