Malaysian
Journal of Analytical Sciences Vol 21 No 6 (2017): 1235 - 1242
DOI:
10.17576/mjas-2017-2106-04
ENCAPSULATION OF GADOLINIUM NANOPARTICLES IN AMINO
ACID BASED VESICLES
(Pengkapsulan Nanozarah Gadolinium ke dalam Vesikel Berasaskan Asid Amino)
Muhammad Zul Azri Muhammad Jamil, Faizal Mohamed*,
Nur Ratasha Alia Md. Rosli, Irman Abdul Rahman
Nuclear Science
Programme, School of Applied Physics,
Faculty of
Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author:
faizalm@ukm.edu.my
Received:
18 April 2017; Accepted: 12 September 2017
Abstract
Production
of amino acid based vesicles using sonication method was employed to determine
its encapsulation efficacy towards gadolinium(III) nanoparticles as potential
drug carrier. The sonication process involved precursor namely sodium
N-lauroylsarcosinate hydrate with 1-decanol to produce vesicle in 92 wt.% of
water. Gadolinium(III) nanoparticle was then encapsulated into the vesicle
system. The structure of Gd2O2CO3 nanoparticles
was confirmed by X-ray Diffraction technique (XRD). Attenuated Total
Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy indicates the
presence of bonding that formed the vesicles. The size distribution of the obtained
gadolinium encapsulated vesicle was examined using Transmission Electron
Microscopy (TEM). It has been proven to be a potential nano-sized drug carrier.
Keywords: vesicles, encapsulation, gadolinium,
sonication, drug carrier
Abstrak
Penghasilan
vesikel berasaskan asid amino menggunakan kaedah sonikasi telah digunakan dalam
menentukan pengkapsulan nanozarah gadolinium(III) yang berpotensi sebagai
pembawa dadah. Proses sonikasi melibatkan prekursor natrium N-lauroylsarkosinat
hidrat dengan 1-dekanol untuk menghasilkan vesikel dalam 92 wt.% air. Nanozarah
gadolinium(III) kemudiannya dikapsulkan ke dalam sistem vesikel. Struktur
nanozarah Gd2O2CO3 telah disahkan
menggunakan teknik pembelauan sinar-X (XRD). Spektroskopi transformasi infra merah
Fourier (ATR-FTIR) menunjukkan kehadiran ikatan yang terbentuk ke atas vesikel.
Taburan saiz yang nanozarah gadolinium terkapsul ke dalam vesikel dilihat
menggunakan mikroskop elektron trasmisi (TEM). Ia telah terbukti berpotensi
sebagai pembawa dadah bersaiz nano.
Kata kunci: vesikel, pengkapsulan, gadolinium, sonikasi,
pembawa dadah
References
1.
Hall,
J. B., Dobrovolskaia, M. A., Patri, A. K. and McNeil, S. E. (2007).
Characterization of nanoparticles for therapeutics. Future Medicine, 2(6): 789 - 803.
2.
Cheow,
W. S. and Hadinoto, K. (2011). Factors affecting drug encapsulation and
stability of lipid–polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces, 85(2): 214 - 220.
3.
Lussier,
J. N., Klemer, D. R., Hawthorn, P. S. and Sobottke, M. D. (1995). Gadolinium
vanadate laser. U.S. Patent No. 5,420,876.
4.
Kleinlogel,
C. and Gauckler, L. (2000). Mixed electronic-ionic conductivity of cobalt doped
cerium gadolinium oxide. Journal of
Electroceramics, 5(3): 231 - 243.
5.
Sondermann,
T. (1981). Method for manufacturing gadolinium-containing nuclear fuels. U.S.
Patent No. 4,278,560.
6.
Bernhard,
E. J., Mitchell, J. B., Deen, D., Cardell, M., Rosenthal, D. I. and Brown, J.
M. (2000). Re-evaluating gadolinium(III) texaphyrin as a radiosensitizing
agent. Cancer Research, 60(1): 86 -
91.
7.
Aisen,
A. M., Martel, W., Braunstein, E. M., McMillin, K. I., Phillips, W. A. and
Kling, T. (1986). MRI and CT evaluation of primary bone and soft-tissue tumors.
American Journal of Roentgenology, 146(4):
749 - 756.
8.
Park,
J.-A., Kim, H.-K., Kim, J.-H., Jeong, S.-W., Jung, J.-C., Lee, G.-H. and Kim,
T.-J. (2010). Gold nanoparticles functionalized by gadolinium–DTPA conjugate of
cysteine as a multimodal bioimaging agent. Bioorganic
& Medicinal Chemistry Letters, 20(7): 2287 - 2291.
9.
Lux, F., Sancey,
L., Bianchi, A., Crémillieux, Y., Roux, S. and Tillement, O. (2015). Gadolinium-based
nanoparticles for theranostic MRI-radiosensitization. Nanomedicine, 10(11): 1801 - 1815.
10.
Szoka
Jr, F. and Papahadjopoulos, D. (1980). Comparative properties and methods of
preparation of lipid vesicles (liposomes). Annual
Review of Biophysics and Bioengineering, 9(1): 467 - 508.
11.
Zhu,
T. F. and Szostak, J. W. (2011). Exploding vesicles. Journal of Systems Chemistry, 2(1): 4 - 10.
12.
Sankar,
V., Ruckmani, K., Jailani, S., Ganesan, K. S. and Sharavanan, S. (2009).
Niosome drug delivery system: Advances and medical applications an overview. Pharmacol Online, 2: 926 - 932.
13.
Rosli,
M., Alia, N. R., Mohamed, F. K. K., Sah, M., Syafiq, M. A. and Rahman, I. A.
(2014). Effect of gamma radiation on amino acid based vesicle carrying
radiosensitizer. Malaysian Journal of
Analytical Sciences, 18(3): 555 - 561.
14.
Cevc,
G. (2004). Lipid vesicles and other colloids as drug carriers on the skin. Advanced Drug Delivery Reviews, 56(5):
675 - 711.
15.
Akter,
N., Mohamed, F., Radiman, S. and Reza, M. I. (2012). Vesicles and lamella:
Outcome of the changing formation path of a sodium N-lauroylsarcosinate
hydrate/1-decanol/water system. Nature
Precedings, 2012: 1 - 18.
16.
Yamamoto,
S., Maruyama, Y. and Hyodo, S. A. (2002). Dissipative particle dynamics study
of spontaneous vesicle formation of amphiphilic molecules. The Journal of Chemical Physics, 116(13): 5842 - 5849.
17.
Lim,
S.-F., Zheng, Y.-M., Zou, S.-W. and Chen, J. P. (2008). Characterization of
copper adsorption onto an alginate encapsulated magnetic sorbent by a combined
FT-IR, XPS, and mathematical modeling study. Environmental Science & Technology, 42(7): 2551 - 2556.