Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1316 - 1326

DOI: 10.17576/mjas-2017-2106-13

 

 

 

COPPER MODIFIED CARBON NITRIDE AS FLUORESCENCE SENSOR FOR NITRATE IONS

 

(Karbon Nitrida Terubah Suai Kuprum Sebagai Sensor Pendafluor Ion Nitrat)

 

Siti Maryam Jasman1, Hendrik O. Lintang2,3,4, Siew Ling Lee1, 2, Leny Yuliati2,3,4*

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Ma Chung Research Center for Photosynthetic Pigments

4Department of Chemistry, Faculty of Science and Technology

Universitas Ma Chung, Malang 65151, East Java, Indonesia

 

*Corresponding author:  leny.yuliati@machung.ac.id

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

In this study, newly developed copper modified CN composites were prepared and tested as a fluorescence sensor for detection of nitrate ions (NO3-). The structure and chemical properties of CN and copper modified CN composites were investigated via X-ray diffraction (XRD), Fourier transform infra-red (FTIR), diffuse reflectance ultraviolet-visible (DR UV-Vis) and fluorescence spectroscopies. Three emission sites represented as C=N, C=O and C-N moieties were suggested to contribute as sensing sites in CN and copper modified CN composites. The sensing capabilities of CN and copper modified CN composites toward NO3- in the range of 300 to 1800 µM were determined via a quenching technique. The quenching efficiencies (KSV) of CN and copper modified CN composites were obtained from the Stern-Volmer plot. Among three emission peaks of CN, C=N sites were found to be the most sensitive site having the strongest interaction with NO3-. By addition of Cu(0.5 mol%), the KSV of CN was improved from 2.11 x 10-4 to 5.27 x 10-4 µM-1. This study showed that with the addition of copper as modifier, the performance of CN can be improved and the composite can be used as potential fluorescence sensor for the detection of NO3-.

 

Keywords:  copper modified carbon nitride, fluorescence sensor, nitrate ion

 

Abstrak

Dalam kajian ini, karbon nitrida terubah suai kuprum yang baru telah disediakan dan diuji sebagai sensor pendafluor untuk mengesan ion nitrat (NO3-). Struktur dan sifat kimia bagi CN telah disiasat melalui pembelauan sinar-X (XRD), transformasian infra-merah Fourier (FTIR), spektroskopi pantulan serakan ultralembayung-cahaya nampak (DR UV-Vis) dan spektroskopi pendafluor. Tiga tapak pelepasan diwakili sebagai moiti C=N, C=O dan C-N telah dicadangkan untuk menyumbang sebagai tapak penderiaan CN dan komposit CN terubah suai kuprum. Keupayaan penderiaan CN dan komposit CN terubah suai kuprum terhadap NO3- dalam lingkungan 300 hingga 1800 µM telah ditentukan melalui teknik pelindapan. Kecekapan pelindapan (KSV) bagi CN dan komposit CN terubah suai kuprum telah diperoleh daripada plot Stern-Volmer. Di antara tiga tapak pelepasan CN, tapak C=N telah ditemui menjadi tapak yang paling sensitif dan mempunyai interaksi paling kuat dengan NO3-. Dengan penambahan Cu(0.5 mol%), nilai KSV bagi CN telah bertambah baik daripada 2.11 x 10-4 kepada 5.27 ×10-4 µM-1. Kajian ini menunjukkan bahawa dengan penambahan kuprum sebagai pengubahsuai, prestasi CN boleh ditingkatkan dan komposit tersebut boleh digunakan sebagai potensi sensor pendafluor untuk mengesan NO3-.

 

Kata kunci:  karbon nitrida terubah suai kuprum, sensor pendafluor, ion nitrat

 

References

1.       Aravamudhan, S. and Bhansali, S. (2008). Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sensors and Actuators B, 132: 623 – 630.

2.       Guadagnini, L. and Tonelli, D. (2008). Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sensors and Actuators B, 188: 806 –814.

3.       Ogata, F., Imai, D. and Kawasaki, N. (2015). Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in binary solution system. Journal of Environmental Chemical Engineering, 3: 155 – 161.

4.       Kim, D., Goldberg, I. B. and Judy, J. W. (2009). Microfabricated electrochemical nitrate sensor using double-potential-step chronocoulometry. Sensor and Actuators B, 135: 618 – 624.

5.       Trikas, D. (2007). Analysis of nitrite and nitrate in biological fluids by assays based on the Griess Reaction: Appraisal of the Griess Reaction in the L-arginine/nitric oxide area of research. Journal of Chromatography B, 851: 51 – 70.

6.       Wang, S., Lin, K., Chen, N., Yuan, D. and Ma, J. (2016). Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant. Talanta, 146: 744 – 748.

7.       Lee, M., Lee, Y., Soltermann, F. and Gunten, U. V. (2013). Analysis of N-nitrosamines and other nitro(so) compounds in water by high-performance liquid chromatography with post-column UV photolysis/Griess reaction. Water Research, 47: 4893 – 4903.

8.       Ridnour, L. A., Sim, J. E., Hayward, M. A., Wink, D. A., Martin, S. M., Buettner, G. R. and Spitz. D. R. (2000). A spectrophotometric method for the direct detection and quantification of nitric oxide, nitrite and nitrate in cell culture media. Analytical Biochemistry, 281: 223 – 229.

9.       Bryan, N. S. and Grisham. M. B. (2007). Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine, 43(5): 645 – 657.

10.    Kumar, V. V. and Anthony, S. P. (2014). Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions. Analytica Chimica Acta, 842: 57 – 62.

11.    Hernandez-Torres, J., Gutierrez-Franco, A., Gonzalez, P. G., Garcia-Gonzalez, L., Hernandez-Quiroz, T., Zamora-Peredo, L., Mendez-Garcia, V. H. and Cisneros-de la Rosa. A. (2016). Photoluminescence and raman spectroscopy studies of carbon nitride films. Journal of Spectroscopy, 2016: 1 – 8 .

12.    Chai, B., Peng, T., Mao, J., Li, K. and Zan, L. (2012). Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Physical Chemistry Chemical Physics, 14: 16745 – 16752.

13.    Yang, S., Gong, Y., Zhang, J., Zhan, L., Ma, L., Fang, Z., Vajtai, R., Wang, X. and Ajayan, P. M. (2013). Exfoliated graphitic carbon nitride nanosheets as efficient catalyst for hydrogen evolution under visible light. Advanced Material, 25: 2452 – 2456.

14.    Thomas, A. Fischer, A. Goettmann, F. Antonietti, M. Muler, J-O. Schlogl, R. and Carlsson, J. M. (2008). Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. Journal of Material Chemistry, 18: 4893 – 4908.

15.    Xia, B., Chu, M., Wang, S, Wang, W., Yang, S., Liu, C. and Luo, S. (2015). Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Analytical Chemica Acta, 9: 891:113 - 119.

16.    Zhao, Z., Sun, Y. and Dong, F. (2015). Graphitic carbon nitride based nanocomposites: A review. Nanoscale, 7: 15 – 37.

17.    Lee, E. Z., Jun, Y-S., Hong, W. H., Thomas, A. and Jin, M. M. (2010). Cubic mesoporous graphitic carbon(iv) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. Angewandte Chemie International Edition, 49: 9706 – 9710.

18.    Tian, J., Liu, Q., Asiri, A. M., Al-Youbi, A. O. and Sun, X. (2013). Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Analytical Chemistry, 85: 5595 – 5599.

19.    Zhang, S., Li, J., Zeng, M., Xu, J., Wang, X. and Hu, W. (2014). Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ Ions. Nanoscale, 6: 4157 – 4162.

20.    Sam, M. S., Lintang, H. O., Sanagi, M. M., Lee, S. L. and Yuliati, L. (2014). Mesoporous carbon nitride for adsorption and fluorescence sensor of n-nitrosopyrrolidine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 357 – 364.

21.    Mane, G. P. Dhawale, D. S. Anand, C. Ariga, K. Ji, Q. Wahab, M. A. Mori, T. and Vinu, A. (2013). Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 1: 2913 – 2920.

22.    Wang, Q., Wang, W., Lei, J., Xu, N., Gaul, F. and Ju, H. (2013). Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Analytical Chemistry. 85: 12182 – 12188.

23.    Alim, N. S. Lintang, H. O. and Yuliati, L. (2015). Fabricated metal-free carbon nitride characterizations for fluorescence chemical sensor of nitrate ions. Journal Teknologi, 76(13): 1 – 6.

24.    Wang, N., Han, Z., Fan, H. and Ai, S. (2015). Copper nanoparticles modified graphitic carbon nitride nanosheets as a peroxidase mimetic for glucose detection. RSC Advances, 5: 91302 – 91307.

25.    Lee, S. C., Lintang, H. O. and Yuliati, L. (2012). A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic removal of phenol. Chemistry-An Asian Journal, 7: 2139 – 2144.

26.    Cheng, S-L. and Chen, M-F. (2012). Fabrication, characterization, and kinetic study of vertical single-crystalline CuO nanowires on Si substrates. Nanoscale Research Letters, 7:119 – 126.

27.    Zhu, J., Xiao, P., Li, H. and Carabineiro, S. A. C. (2014). Graphitic carbon nitride: synthesis, properties and application in catalysis. Applied Materials & Interfaces, 6: 16449 – 16465.

28.    Dong, G., Zhang, Y., Pan, Q. and Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20: 33 – 50.

29.    Cui, Y., Tang, Y. and Wang, X. (2015). Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutant. Materials Letters, 161: 197 – 200.

30.    Dai, H., Gao, X., Liu, E., Yang, Y., Hou, W., Kang, L. and Fan, J. (2013). Synthesis and characterization of graphitic carbon nitride submicrospheres using microwave method under mild condition. Diamond and Related Materials, 38: 109 – 117.

31.    Tiong, P., Lintang, H. O., Endud, S. and Yuliati, L. (2015). Improved interfacial charge transfer and visible light activity of reduced graphene oxide-graphitic carbon nitride photocatalysts. RSC Advances, 5: 94029 – 94039.

32.    Jasman, S. M., Lintang, H. O. and Yuliati, L. (2017). Enhanced detection of nitrite ions over copper acetylacetonate/polymeric carbon nitride composites. Macromolecular Symposia, 371: 84 – 93.

33.    Ding, Z., Chen, X., Antonietti, M. and Wang, X. (2011). Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem, 4: 274 – 281.

34.    Luo, J., Cui, Z-C. and Zang, G-K. (2013). Mesoporous metal-containing carbon nitrides for improved photocatalytic activities. Journal of Chemistry, 2013: 1 – 6.

35.    Mu, T., Huang, J., Liu, Z., Han, B., Li, Z., Wang, Y., Jiang, T. and Gao, H. (2004). Synthesis and characterization of polyester structure carbon nitride. Journal of Material Research, 19(6): 1736 – 1741.

36.    Liu, J., Zhang, T., Wang, Z. Dawson, G. Chen, W. (2011). Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity. Journal of Materials Chemistry, 21: 14398 – 14401.

37.    Derrien, G., Charnay, C., Zajac, J., Jones, D. J. and Roziere, J. (2008). Copper-containing monodisperse mesoporous silica nanospheres by a smart one-step approach. Chemistry Communication, 27: 3118 – 3120.

38.    Tang, I. H., Sundari, R., Lintang, H. O. and Yuliati, L. (2016). Polyvinylpyrolidone as a new fluorescent sensor for nitrate ion. Malaysia Journal of Analytical Sciences, 20(2): 288 – 295.

 




Previous                    Content                    Next