Malaysian Journal of Analytical Sciences
Vol 21 No 6 (2017): 1316 - 1326
DOI:
10.17576/mjas-2017-2106-13
COPPER
MODIFIED CARBON NITRIDE AS FLUORESCENCE SENSOR FOR NITRATE IONS
(Karbon Nitrida Terubah Suai
Kuprum Sebagai Sensor Pendafluor Ion Nitrat)
Siti Maryam Jasman1, Hendrik O. Lintang2,3,4,
Siew Ling Lee1, 2, Leny Yuliati2,3,4*
1Department of Chemistry, Faculty of Science
2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for
Scientific and Industrial Research
Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,
Malaysia
3Ma Chung Research Center for Photosynthetic Pigments
4Department of Chemistry, Faculty of Science and Technology
Universitas Ma Chung, Malang 65151, East Java, Indonesia
*Corresponding author:
leny.yuliati@machung.ac.id
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
In this study, newly developed copper modified CN composites were
prepared and tested as a fluorescence sensor for detection of nitrate ions (NO3-).
The structure and chemical properties of CN and copper modified CN composites were
investigated via X-ray diffraction (XRD), Fourier transform infra-red (FTIR),
diffuse reflectance ultraviolet-visible (DR UV-Vis) and fluorescence
spectroscopies. Three emission sites represented as C=N, C=O and C-N moieties were
suggested to contribute as sensing sites in CN and copper modified CN
composites. The sensing capabilities of CN and copper modified CN composites
toward NO3- in the range of 300 to 1800 µM were determined
via a quenching technique. The quenching efficiencies (KSV) of CN and copper modified CN composites were
obtained from the Stern-Volmer plot. Among three emission peaks of CN, C=N
sites were found to be the most sensitive site having the strongest interaction
with NO3-. By addition of Cu(0.5 mol%), the KSV of CN was improved from
2.11 x 10-4 to 5.27 x 10-4 µM-1. This study
showed that with the addition of copper as modifier, the performance of CN can be
improved and the composite can be used as potential fluorescence sensor for the
detection of NO3-.
Keywords: copper modified carbon
nitride, fluorescence sensor, nitrate ion
Abstrak
Dalam kajian ini,
karbon nitrida terubah suai kuprum yang baru telah disediakan dan diuji sebagai
sensor pendafluor untuk mengesan ion nitrat (NO3-). Struktur
dan sifat kimia bagi CN telah disiasat melalui pembelauan sinar-X (XRD), transformasian
infra-merah Fourier (FTIR), spektroskopi pantulan serakan ultralembayung-cahaya
nampak (DR UV-Vis) dan spektroskopi pendafluor. Tiga tapak pelepasan diwakili sebagai
moiti C=N, C=O dan C-N telah dicadangkan untuk menyumbang sebagai tapak penderiaan
CN dan komposit CN terubah suai kuprum. Keupayaan penderiaan CN dan komposit CN
terubah suai kuprum terhadap NO3- dalam lingkungan 300 hingga
1800 µM telah ditentukan melalui teknik pelindapan. Kecekapan pelindapan (KSV) bagi CN dan komposit CN terubah
suai kuprum telah diperoleh daripada plot Stern-Volmer. Di antara tiga tapak pelepasan
CN, tapak C=N telah ditemui menjadi tapak yang paling sensitif dan mempunyai interaksi
paling kuat dengan NO3-. Dengan penambahan Cu(0.5 mol%), nilai
KSV bagi CN telah bertambah
baik daripada 2.11 x 10-4 kepada 5.27 ×10-4 µM-1.
Kajian ini menunjukkan bahawa dengan penambahan kuprum sebagai pengubahsuai, prestasi
CN boleh ditingkatkan dan komposit tersebut boleh digunakan sebagai potensi
sensor pendafluor untuk mengesan NO3-.
Kata
kunci: karbon
nitrida terubah suai kuprum, sensor pendafluor, ion nitrat
References
1.
Aravamudhan, S.
and Bhansali, S. (2008). Development of micro-fluidic nitrate-selective sensor
based on doped-polypyrrole nanowires. Sensors and Actuators B, 132: 623
– 630.
2.
Guadagnini, L.
and Tonelli, D. (2008). Carbon electrodes unmodified and decorated with silver
nanoparticles for the determination of nitrite, nitrate and iodate. Sensors
and Actuators B, 188: 806 –814.
3.
Ogata, F., Imai,
D. and Kawasaki, N. (2015). Adsorption of nitrate and nitrite ions onto
carbonaceous material produced from soybean in binary solution system. Journal
of Environmental Chemical Engineering, 3: 155 – 161.
4.
Kim, D.,
Goldberg, I. B. and Judy, J. W. (2009). Microfabricated electrochemical nitrate
sensor using double-potential-step chronocoulometry. Sensor and Actuators B,
135: 618 – 624.
5.
Trikas, D.
(2007). Analysis of nitrite and nitrate in biological fluids by assays based on
the Griess Reaction: Appraisal of the Griess Reaction in the L-arginine/nitric
oxide area of research. Journal of Chromatography B, 851: 51 – 70.
6.
Wang, S., Lin,
K., Chen, N., Yuan, D. and Ma, J. (2016). Automated determination of nitrate
plus nitrite in aqueous samples with flow injection analysis using vanadium
(III) chloride as reductant. Talanta, 146: 744 – 748.
7.
Lee, M., Lee,
Y., Soltermann, F. and Gunten, U. V. (2013). Analysis of N-nitrosamines
and other nitro(so) compounds in water by high-performance liquid
chromatography with post-column UV photolysis/Griess reaction. Water
Research, 47: 4893 – 4903.
8.
Ridnour, L. A.,
Sim, J. E., Hayward, M. A., Wink, D. A., Martin, S. M., Buettner, G. R. and
Spitz. D. R. (2000). A spectrophotometric method for the direct detection and
quantification of nitric oxide, nitrite and nitrate in cell culture media. Analytical
Biochemistry, 281: 223 – 229.
9.
Bryan, N. S.
and Grisham. M. B. (2007). Methods to detect nitric oxide and its metabolites
in biological samples. Free Radical Biology and Medicine, 43(5): 645 –
657.
10.
Kumar, V. V.
and Anthony, S. P. (2014). Highly selective silver nanoparticles based label
free colorimetric sensor for nitrite anions. Analytica Chimica Acta,
842: 57 – 62.
11.
Hernandez-Torres,
J., Gutierrez-Franco, A., Gonzalez, P. G., Garcia-Gonzalez, L.,
Hernandez-Quiroz, T., Zamora-Peredo, L., Mendez-Garcia, V. H. and Cisneros-de
la Rosa. A. (2016). Photoluminescence and raman spectroscopy studies of carbon
nitride films. Journal of Spectroscopy, 2016: 1 – 8 .
12.
Chai, B., Peng,
T., Mao, J., Li, K. and Zan, L. (2012). Graphitic carbon nitride (g-C3N4)-Pt-TiO2
nanocomposite as an efficient photocatalyst for hydrogen production under
visible light irradiation. Physical Chemistry Chemical Physics, 14:
16745 – 16752.
13.
Yang, S., Gong,
Y., Zhang, J., Zhan, L., Ma, L., Fang, Z., Vajtai, R., Wang, X. and Ajayan, P.
M. (2013). Exfoliated graphitic carbon nitride nanosheets as efficient catalyst
for hydrogen evolution under visible light. Advanced Material, 25: 2452
– 2456.
14.
Thomas, A.
Fischer, A. Goettmann, F. Antonietti, M. Muler, J-O. Schlogl, R. and Carlsson,
J. M. (2008). Graphitic carbon nitride materials: Variation of structure and
morphology and their use as metal-free catalysts. Journal of Material
Chemistry, 18: 4893 – 4908.
15.
Xia, B., Chu,
M., Wang, S, Wang, W., Yang, S., Liu, C. and Luo, S. (2015). Graphene oxide
amplified electrochemiluminescence of graphitic carbon nitride and its
application in ultrasensitive sensing for Cu2+. Analytical
Chemica Acta, 9: 891:113 - 119.
16.
Zhao, Z., Sun,
Y. and Dong, F. (2015). Graphitic carbon nitride based nanocomposites: A
review. Nanoscale, 7: 15 – 37.
17.
Lee, E. Z.,
Jun, Y-S., Hong, W. H., Thomas, A. and Jin, M. M. (2010). Cubic mesoporous
graphitic carbon(iv) nitride: an all-in-one chemosensor for selective optical
sensing of metal ions. Angewandte Chemie International Edition, 49: 9706
– 9710.
18.
Tian, J., Liu,
Q., Asiri, A. M., Al-Youbi, A. O. and Sun, X. (2013). Ultrathin graphitic
carbon nitride nanosheet: A highly efficient fluorosensor for rapid,
ultrasensitive detection of Cu2+. Analytical Chemistry, 85:
5595 – 5599.
19.
Zhang, S., Li,
J., Zeng, M., Xu, J., Wang, X. and Hu, W. (2014). Polymer nanodots of graphitic
carbon nitride as effective fluorescent probes for the detection of Fe3+
and Cu2+ Ions. Nanoscale, 6: 4157 – 4162.
20.
Sam, M. S., Lintang,
H. O., Sanagi, M. M., Lee, S. L. and Yuliati, L. (2014). Mesoporous carbon
nitride for adsorption and fluorescence sensor of n-nitrosopyrrolidine. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 124: 357 – 364.
21.
Mane, G. P. Dhawale,
D. S. Anand, C. Ariga, K. Ji, Q. Wahab, M. A. Mori, T. and Vinu, A. (2013).
Selective sensing performance of mesoporous carbon nitride with a highly
ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of
Materials Chemistry A, 1: 2913 – 2920.
22.
Wang, Q., Wang,
W., Lei, J., Xu, N., Gaul, F. and Ju, H. (2013). Fluorescence quenching of
carbon nitride nanosheet through its interaction with DNA for versatile
fluorescence sensing. Analytical Chemistry. 85: 12182 – 12188.
23.
Alim, N. S. Lintang,
H. O. and Yuliati, L. (2015). Fabricated metal-free carbon nitride
characterizations for fluorescence chemical sensor of nitrate ions. Journal
Teknologi, 76(13): 1 – 6.
24.
Wang, N., Han,
Z., Fan, H. and Ai, S. (2015). Copper nanoparticles modified graphitic carbon
nitride nanosheets as a peroxidase mimetic for glucose detection. RSC
Advances, 5: 91302 – 91307.
25.
Lee, S. C., Lintang,
H. O. and Yuliati, L. (2012). A urea precursor to synthesize carbon nitride
with mesoporosity for enhanced activity in the photocatalytic removal of phenol.
Chemistry-An Asian Journal, 7: 2139 –
2144.
26.
Cheng, S-L. and
Chen, M-F. (2012). Fabrication, characterization, and kinetic study of vertical
single-crystalline CuO nanowires on Si substrates. Nanoscale Research
Letters, 7:119 – 126.
27.
Zhu, J., Xiao,
P., Li, H. and Carabineiro, S. A. C. (2014). Graphitic carbon nitride:
synthesis, properties and application in catalysis. Applied Materials &
Interfaces, 6: 16449 – 16465.
28.
Dong, G.,
Zhang, Y., Pan, Q. and Qiu, J. (2014). A fantastic graphitic carbon nitride
(g-C3N4) material: Electronic structure, photocatalytic
and photoelectronic properties. Journal of Photochemistry and Photobiology
C: Photochemistry Reviews, 20: 33 – 50.
29.
Cui, Y., Tang,
Y. and Wang, X. (2015). Template-free synthesis of graphitic carbon nitride
hollow spheres for photocatalytic degradation of organic pollutant. Materials
Letters, 161: 197 – 200.
30.
Dai, H., Gao,
X., Liu, E., Yang, Y., Hou, W., Kang, L. and Fan, J. (2013). Synthesis and
characterization of graphitic carbon nitride submicrospheres using microwave
method under mild condition. Diamond and Related Materials, 38: 109 –
117.
31.
Tiong, P.,
Lintang, H. O., Endud, S. and Yuliati, L. (2015). Improved interfacial charge
transfer and visible light activity of reduced graphene oxide-graphitic carbon
nitride photocatalysts. RSC Advances,
5: 94029 – 94039.
32.
Jasman, S. M.,
Lintang, H. O. and Yuliati, L. (2017). Enhanced detection of nitrite ions over
copper acetylacetonate/polymeric carbon nitride composites. Macromolecular Symposia, 371: 84 – 93.
33.
Ding, Z., Chen,
X., Antonietti, M. and Wang, X. (2011). Synthesis of transition metal-modified
carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem,
4: 274 – 281.
34.
Luo, J., Cui,
Z-C. and Zang, G-K. (2013). Mesoporous metal-containing carbon nitrides for
improved photocatalytic activities. Journal of Chemistry, 2013: 1 – 6.
35.
Mu, T., Huang,
J., Liu, Z., Han, B., Li, Z., Wang, Y., Jiang, T. and Gao, H. (2004). Synthesis
and characterization of polyester structure carbon nitride. Journal of
Material Research, 19(6): 1736 – 1741.
36.
Liu, J., Zhang,
T., Wang, Z. Dawson, G. Chen, W. (2011). Simple Pyrolysis of Urea into
Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic
Activity. Journal of Materials Chemistry, 21: 14398
– 14401.
37.
Derrien, G., Charnay,
C., Zajac, J., Jones, D. J. and Roziere, J. (2008). Copper-containing
monodisperse mesoporous silica nanospheres by a smart one-step approach. Chemistry
Communication, 27: 3118 – 3120.
38.
Tang, I. H., Sundari, R., Lintang,
H. O. and Yuliati, L. (2016). Polyvinylpyrolidone as a new fluorescent sensor
for nitrate ion. Malaysia Journal of Analytical Sciences, 20(2): 288 – 295.