Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1307 - 1315

DOI: 10.17576/mjas-2017-2106-12

 

 

 

MOLECULARLY IMPRINTED TIO2 INORGANIC FILM AND PVDF/TIO2 COMPOSITE FILM AS SENSORS FOR THE DETECTION OF CHEMICAL THREAT AGENTS USING QUARTZ CRYSTAL MICROBALANCE

 

(TiO2 Filem Tak Organik dan Filem Komposit PVDF/TiO2 Molekul Tercetak sebagai Sensor untuk Mengesan Agen Kimia Berbahaya Menggunakan Penimbang Mikro Kristal Kuarza)

 

Xuan Hao Lin1, Kah Sing Chooi1, Sam Fong Yau Li1, 2*

 

1Department of Chemistry,

National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

2NUS Environmental Research Institute (NERI),

 #02-01, T-Lab Building (TL), 5A Engineering Drive 1, Singapore 117411, Singapore

 

*Corresponding author:  chmlifys@nus.edu.sg

 

 

Received: 7 November 2016; Accepted: 18 September 2017

 

 

Abstract

In this paper, we report molecularly imprinted TiO2 inorganic film (MITiO2) and PVDF/TiO2 composite film (MIPTiO2) as sensors for the detection of parathion methyl (PTM), a simulant of chemical threat agent (CTA) using quartz crystal microbalance (QCM). PTM was used as a molecular template for the imprinting of the sensor film. The MITiO2 showed a greater response (Df 19 Hz) to 9.88 mM of PTM than that (Df 2 Hz) of the MIPTiO2. The ratios of TiO2/template and PVDF/TiO2/template were optimized. Time for the UV degradation of the template was also optimized. MITiO2 sensor shows good potential for the detection of CTA, other chemical and biochemical pollutants.

 

Keywords:  molecularly imprinted polymer, quartz crystal microbalance, sensor, TiO2, parathion methyl

 

Abstrak

Dalam kajian ini, kami melaporkan TiO2 filem tak organik (MITiO2) dan filem komposit PVDF/TiO2 (MIPTiO2) molekul tercetak sebagai sensor untuk mengesan paration metil (PTM), yang merupakan ejen bahan kimia berbahaya (CTA) menggunakan penimbang mikro kristal kuarza (QCM). PTM telah digunakan sebagai templat molekul untuk peneraan filem sensor. MITiO2 menunjukkan tindak balas yang lebih besar (Df = 19 Hz) pada kepekatan 9.88 mM daripada PTM berbanding MIPTiO2 (Df = 2 Hz). Nisbah TiO2/templat dan PVDF/TiO2/templat telah dioptimumkan. Masa untuk degradasi UV bagi templat juga telah dioptimumkan. Sensor MITiO2 menunjukkan potensi yang baik untuk mengesan CTA, serta bahan kimia yang lain dan bahan pencemar biokimia.

 

Kata kunci:  polimer molekul tercetak, penimbang mikro kristal kuarza, sensor, TiO2, paration metil

 

References

1.       Aas, P. (2003). The threat of mid-spectrum chemical warfare agents. Prehospital and Disaster Medicine, 18(4): 306 – 312.

2.       Stebbins, M. (2016). Type of chemical weapons. Federation of American scientists. Access online  http://fas.org/cw/cwagents.htm.

3.       Bajgar, J. (2005). Complex view on poisoning with nerve agents and organophosphates. Acta Medica, 48(1): 3 – 21.

4.       Samuels, R. J. (2006). Encyclopedia of Unites States National Security. Sage Publications, United Kingdom. pp. 117 – 118.

5.       Creaser, C. S., Griffiths, J. R., Bramwell, C. J., Noreen, S., Hill, C. A. and Thomas, C. L. P. (2004). Ion mobility spectrometry: A review Part 1 – Structural analysis by mobility measurement. The Analyst, 129: 984 – 994.

6.       Frishman, G. and Amiray, A. (2000). Fast GC-PFPD system for field analysis of chemical warfare agents. Field Analytical Chemistry and Technology, 4(4): 170 – 194.

7.       Singh, K., Pasha, A. and Amitha, B. E. (2013). Preparation of molecularly imprinted polymers for heptachlor: An organochloride pesticide. Chronical Young Scientist, 4: 46 – 50.

8.       Vergara, A. V., Pernites, R. B., Pascua, S., Binag, C. A. and Advincula, P. C., (2012). QCM sensing of a chemical nerve agent analog via electropolymerized molecularly imprinted polythiophene film. Journal of Polymer Science Part A: Polymer Chemistry, 50: 675 – 685.

9.       Schirhagl, R. (2014). Bioapplications for molecularly imprinted polymers. Analytical Chemistry, 86: 250 – 261.

10.    Salomaki, M. and Kankare, J. (2007). Modelling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator. Journal of Physical Chemistry B, 111(29): 8509 – 8519.

11.    Scorrano, S., Mergola, L., Bello, M. P. D., Lazzoi, M. R., Vasapollo, G. and Sole, R. D. (2015). Molecularly imprinted composite membranes for selective detection of 2-deoxyadenosine in urine samples. International Journal of Molecular Science, 16: 13746 – 13759.

12.    Yang, Z., Yan, J. and Zhang, C. (2012). Piezoelectric detection of bilirubin based on bilirubin-imprinted titania film electrode. Analytical Biochemistry, 421: 37 – 42.

13.    Wu, C. and Linden, K. G., (2008). Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H2O2 treatment. Water Research, 42(19): 4780 – 4790.

14.    Sun, B., Vorontsov, A. V. and Smirniotis, P. G. (2011). Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2. Journal of Hazardous Materials, 186: 1147 – 1153.

15.    Armakovid, S. J., Finc-ur, N. L., Sibul, F., Vione, D., Setrajc, J. P. and Abramovic, B. F. (2015). Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension. a combined experimental and theoretical study. RSC Advances, 5: 54589 – 54604.

16.    Lin, X. H. and Li, S. F. Y. (2015). Impact of the spatial distribution of sulfate species on the activities of SO42-/TiO2 photocatalysts for the degradation of organic pollutants in reverse osmosis concentrate. Applied Catalysis B-Environment, 170: 263 – 272.

17.    Zoh, K. D., Kim, T. S., Kim, J. G., Choi, K. and Yi, S. M. (2006). Parathion degradation and toxicity reduction in solar photocatalysis and photolysis. Water Science and Technology, 53(3): 1 – 8.

18.    Moctezuma, E., Leyva, E., Palestine, G. and Lasa, H. D., (2007). Photocatalytic degradation of methyl parathion: Reaction pathways and intermediate reaction products. Journal of Photochemistry and Photobiology A: Chemistry, 186: 71 – 84.

19.    Takeuchi, M., Sakamoto, K., Martra, G., Coluccia, S. and Anpo, M. (2005). Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. Journal of Physical Chemistry B, 109 (32): 15422 – 15428.

20.    Gao, Y. F., Masuda, Y. and Koumoto, K., (2004). Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir, 20(8): 3188 – 3194.

21.    Permpoon, S., Houmard, M., Riassetto, D., Rapenne, L., Berthome, G., Baroux, B., Joud, J. C. and Langlet, M. (2008). Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films, 516(6): 957 – 966.

22.    Ye, L. Q., Yang, C. J., Tian, L. H., Zan, L. and Peng, T. Y. (2011). Tunable photocatalytic selectivity of fluoropolymer PVDF modified TiO2. Applied Surface Science, 257 (18): 8072 – 8077.

23.    Lee, M. J., Ong, C. S., Lau, W. J., Ng, B. C., Ismail, A. F. and Lai, S. O. (2016). Degradation of PVDF-based composite membrane and its impacts on membrane intrinsic and separation properties. Journal of Polymer Engineering 36(3): 261 – 268.

 




Previous                    Content                    Next