Malaysian
Journal of Analytical Sciences Vol 21 No 6 (2017): 1307 - 1315
DOI:
10.17576/mjas-2017-2106-12
MOLECULARLY IMPRINTED TIO2 INORGANIC FILM
AND PVDF/TIO2 COMPOSITE FILM AS SENSORS FOR THE DETECTION OF
CHEMICAL THREAT AGENTS USING QUARTZ CRYSTAL MICROBALANCE
(TiO2 Filem Tak Organik dan Filem
Komposit PVDF/TiO2 Molekul Tercetak sebagai Sensor untuk Mengesan
Agen Kimia Berbahaya Menggunakan Penimbang Mikro Kristal Kuarza)
Xuan Hao Lin1, Kah Sing Chooi1, Sam Fong Yau Li1,
2*
1Department of Chemistry,
National University of Singapore, 3 Science Drive 3, Singapore 117543,
Singapore
2NUS Environmental Research Institute (NERI),
#02-01, T-Lab Building (TL), 5A Engineering
Drive 1, Singapore 117411, Singapore
*Corresponding author: chmlifys@nus.edu.sg
Received: 7
November 2016; Accepted: 18 September 2017
Abstract
In
this paper, we report molecularly imprinted TiO2 inorganic film
(MITiO2) and PVDF/TiO2 composite film (MIPTiO2)
as sensors for the detection of parathion methyl (PTM), a simulant of chemical
threat agent (CTA) using quartz crystal microbalance (QCM). PTM was used as a
molecular template for the imprinting of the sensor film. The MITiO2
showed a greater response (Df 19 Hz) to 9.88 mM of PTM than
that (Df
2 Hz) of the MIPTiO2. The ratios of TiO2/template and
PVDF/TiO2/template were optimized. Time for the UV degradation of
the template was also optimized. MITiO2 sensor shows good potential
for the detection of CTA, other chemical and biochemical pollutants.
Keywords: molecularly imprinted polymer, quartz crystal
microbalance, sensor, TiO2, parathion methyl
Abstrak
Dalam kajian ini,
kami melaporkan TiO2 filem tak organik (MITiO2) dan filem
komposit PVDF/TiO2 (MIPTiO2) molekul tercetak sebagai
sensor untuk mengesan paration metil (PTM), yang merupakan ejen bahan kimia berbahaya
(CTA) menggunakan penimbang mikro kristal kuarza (QCM). PTM telah digunakan
sebagai templat molekul untuk peneraan filem sensor. MITiO2
menunjukkan tindak balas yang lebih besar (Df = 19 Hz) pada kepekatan 9.88 mM daripada PTM berbanding MIPTiO2 (Df = 2 Hz). Nisbah TiO2/templat dan PVDF/TiO2/templat
telah dioptimumkan. Masa untuk degradasi UV bagi templat juga telah dioptimumkan.
Sensor MITiO2 menunjukkan potensi yang baik untuk mengesan CTA,
serta bahan kimia yang lain dan bahan pencemar biokimia.
Kata kunci: polimer molekul tercetak, penimbang mikro kristal kuarza,
sensor, TiO2, paration metil
References
1.
Aas,
P. (2003). The threat of mid-spectrum chemical warfare agents. Prehospital and Disaster Medicine,
18(4): 306 – 312.
2.
Stebbins,
M. (2016). Type of chemical weapons. Federation
of American scientists. Access online
http://fas.org/cw/cwagents.htm.
3.
Bajgar,
J. (2005). Complex view on poisoning with nerve agents and organophosphates. Acta Medica, 48(1): 3 – 21.
4.
Samuels,
R. J. (2006). Encyclopedia of Unites States National Security. Sage
Publications, United Kingdom. pp. 117 – 118.
5.
Creaser,
C. S., Griffiths, J. R., Bramwell, C. J., Noreen, S., Hill, C. A. and Thomas,
C. L. P. (2004). Ion mobility spectrometry: A review Part 1 – Structural analysis
by mobility measurement. The Analyst,
129: 984 – 994.
6.
Frishman,
G. and Amiray, A. (2000). Fast GC-PFPD system for field analysis of chemical
warfare agents. Field Analytical
Chemistry and Technology, 4(4): 170 – 194.
7.
Singh,
K., Pasha, A. and Amitha, B. E. (2013). Preparation of molecularly imprinted
polymers for heptachlor: An organochloride pesticide. Chronical Young Scientist, 4: 46 – 50.
8.
Vergara,
A. V., Pernites, R. B., Pascua, S., Binag, C. A. and Advincula, P. C., (2012). QCM
sensing of a chemical nerve agent analog via electropolymerized molecularly
imprinted polythiophene film. Journal of Polymer
Science Part A: Polymer Chemistry, 50: 675 – 685.
9.
Schirhagl,
R. (2014). Bioapplications for molecularly imprinted polymers. Analytical Chemistry, 86: 250 – 261.
10.
Salomaki,
M. and Kankare, J. (2007). Modelling the growth processes of polyelectrolyte
multilayers using a quartz crystal resonator. Journal of Physical Chemistry B, 111(29): 8509 – 8519.
11.
Scorrano, S.,
Mergola, L., Bello, M. P. D., Lazzoi, M. R., Vasapollo, G. and Sole, R. D.
(2015). Molecularly
imprinted composite membranes for selective detection of 2-deoxyadenosine in
urine samples. International Journal of Molecular
Science, 16: 13746 – 13759.
12.
Yang,
Z., Yan, J. and Zhang, C. (2012). Piezoelectric detection of bilirubin based on
bilirubin-imprinted titania film electrode. Analytical
Biochemistry, 421: 37 – 42.
13.
Wu,
C. and Linden, K. G., (2008). Degradation and byproduct formation of parathion
in aqueous solutions by UV and UV/H2O2 treatment. Water Research, 42(19): 4780 – 4790.
14.
Sun,
B., Vorontsov, A. V. and Smirniotis, P. G. (2011). Parametric studies of
diethyl phosphoramidate photocatalytic decomposition over TiO2. Journal of Hazardous Materials, 186:
1147 – 1153.
15.
Armakovid,
S. J., Finc-ur, N. L., Sibul, F., Vione, D., Setrajc, J. P. and Abramovic, B.
F. (2015). Influence of electron acceptors on the kinetics of metoprolol
photocatalytic degradation in TiO2 suspension. a combined
experimental and theoretical study. RSC
Advances, 5: 54589 – 54604.
16.
Lin,
X. H. and Li, S. F. Y. (2015). Impact of the spatial distribution of sulfate
species on the activities of SO42-/TiO2
photocatalysts for the degradation of organic pollutants in reverse osmosis
concentrate. Applied Catalysis B-Environment, 170: 263 – 272.
17.
Zoh,
K. D., Kim, T. S., Kim, J. G., Choi, K. and Yi, S. M. (2006). Parathion degradation
and toxicity reduction in solar photocatalysis and photolysis. Water Science and Technology, 53(3): 1 –
8.
18.
Moctezuma, E.,
Leyva, E., Palestine, G. and Lasa, H. D., (2007). Photocatalytic degradation
of methyl parathion: Reaction pathways and intermediate reaction products. Journal of Photochemistry and Photobiology
A: Chemistry, 186: 71 – 84.
19.
Takeuchi,
M., Sakamoto, K., Martra, G., Coluccia, S. and Anpo, M. (2005). Mechanism of
photoinduced superhydrophilicity on the TiO2 photocatalyst surface. Journal
of Physical Chemistry B, 109 (32): 15422 – 15428.
20.
Gao,
Y. F., Masuda, Y. and Koumoto, K., (2004). Light-excited superhydrophilicity of
amorphous TiO2 thin films deposited in an aqueous peroxotitanate
solution. Langmuir, 20(8): 3188 – 3194.
21.
Permpoon,
S., Houmard, M., Riassetto, D., Rapenne, L., Berthome, G., Baroux, B., Joud, J.
C. and Langlet, M. (2008). Natural and persistent superhydrophilicity of SiO2/TiO2
and TiO2/SiO2 bi-layer films. Thin Solid Films, 516(6):
957 – 966.
22.
Ye,
L. Q., Yang, C. J., Tian, L. H., Zan, L. and Peng, T. Y. (2011). Tunable
photocatalytic selectivity of fluoropolymer PVDF modified TiO2. Applied
Surface Science, 257 (18): 8072 – 8077.
23.
Lee,
M. J., Ong, C. S., Lau, W. J., Ng, B. C., Ismail, A. F. and Lai, S. O. (2016).
Degradation of PVDF-based composite membrane and its impacts on membrane
intrinsic and separation properties. Journal of Polymer Engineering 36(3):
261 – 268.