Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1054 - 1064
DOI:
https://doi.org/10.17576/mjas-2017-2105-07
ISOLATION AND
CHARACTERISATION OF MICROPLASTIC ABUNDANCE IN Lates calcarifer FROM SETIU WETLANDS, MALAYSIA
(Pemisahan
dan Pencirian Plastik-Mikro di dalam Lates
calcarifer dari Tanah Bencah Setiu, Malaysia)
Yusof Shuaib Ibrahim*, Ruthra Rathnam, Sabiqah Tuan Anuar, Wan Mohd Afiq
Wan Mohd Khalik
School of Marine and Environmental Sciences,
Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia
*Corresponding author: yusofshuaib@umt.edu.my
Received: 20
July 2017; Accepted: 14 September 2017
Abstract
The presence of
microplastics (<1 mm) in wild and cage-cultured Asian sea bass (Lates calcarifer) was successfully
studied. Fish samples were collected from Setiu Wetlands in October 2016.
Microplastics were isolated from fish samples using the alkaline solution
method (10 M of NaOH solution). Microplastics were sorted visually according to
their shapes and colours after being observed under dissecting microscope. A
total of 4,498 pieces of microplastics were identified and threadlike shape was
the most abundant microplastic particles found during this study. The
identification of functional groups in the composition of microplastics was
achieved using Fourier transform infrared (FTIR) spectroscopy. Microplastics,
with the presence of strong peaks at ʋ=3342
cm-1 (N-H str), 1510 cm-1 (N-H bend) and ʋ=1706 cm-1 (C=O str) are
associated with the materials consist of polyamide. Additionally, peaks related
to the polyvinyl alcohol groups are recorded at ʋ= 3321 – 4323 cm-1 (O-H str), 1706 cm-1 (C=O
str), 1219 cm-1 (O-H wag) and ʋ=1028
– 1128 cm-1 (C-O str). The abundance levels of microplastics
ingested by wild and cage-cultured fishes are statistically significantly
different, p <0.05.
Keywords: Asian sea bass, fish ingestion, microplastics,
polymer, wetland environment
Abstrak
Kemunculan
plastik-mikro (<1 mm) di dalam ikan siakap liar dan sangkar ternakan (Lates calcarifer) telah berjaya dikaji.
Sampel ikan diambil dari tanah bencah Setiu semasa bulan Oktober 2016.
Plastik-mikro telah diasingkan daripada sampel ikan mengunakan kaedah larutan
beralkali (10 M larutan NaOH). Plastik-mikro telah diasingkan secara visual
dibawah mikroskop mengikut perbezaan warna dan bentuk. Sejumlah 4,498 pecahan
plastik-mikro telah dikenalpasti dan bentuk benang merupakan partikel yang
paling kerap dijumpai semasa kajian ini dijalankan. Pengenalpastian kumpulan
berfungsi bagi komposisi plastik-mikro telah dicapai menggunakan spektroskopi
FTIR. Analisis plastik-mikro menunjukkan kehadiran puncak yang jelas pada ʋ=3342 cm-1
(N-H str), 1510 cm-1 (N-H bend) dan ʋ=1706 cm-1 (C=O str) bagi komposisi
polimer kumpulan poliamida. Tambahan, puncak yang menunjukan kehadiran kumpulan
polivinil alkohol dicatatkan pada ʋ= 3321 – 4323 cm-1
(O-H str), 1706 cm-1 (C=O str), 1219 cm-1 (O-H wag) dan ʋ=1028 – 1128 cm-1 (C-O str). Aras kehadiran plastik-mikro yang dihadam oleh ikan
liar dan sangkar ternakan adalah berbeza secara signifikan, p < 0.05.
Kata kunci: ikan siakap,
penghadaman oleh ikan, plastik-mikro, polimer, persekitaran tanah bencah
References
1.
Browne, M. A., Underwood, A. J., Chapman, M. G., Williams,
R., Thompson, R. C. and van Franeker, J. A. (2015). Linking effect of
anthropogenic debris to ecological impacts. Proceedings of the Royal Society
B: Biological Sciences, 28: 2014 – 2929.
2.
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M.
and Thompson, R. C. (2008). Ingested microscopic plastic translocates to the
circulatory system of the mussel, Mytilus
edulis (L.). Environmental Science & Technology, 42: 5026 –
5031.
3.
Ivor Do Sul, J. A., Costa, M. F., Barletta, M. and Cysneiros,
F.J. (2013). Pelagic microplastics around an archipelago of the Equatorial
Atlantic. Marine Pollution Bulletin, 75: 305 – 307.
4.
Boerger, C. M., Lattin, G. L., Moore, S. L. and Moore, C. J.
(2010). Plastic ingestion by planktivorous fishes in the North Pacific Central
Gyre. Marine Pollution Bulletin, 60(12): 2275 – 2278.
5.
Possatto, F. E., Barletta, M., Costa, M. F., do Sul, J. A. I.
and Dantas, D. V. (2011). Plastic debris ingestion by marine catfish: An
unexpected fisheries impact. Marine Pollution Bulletin, 62(5): 1098
–1102.
6.
Lusher, A. L., McHugh, M. and Thompson, R. C. (2013).
Occurrence of microplastics in gastrointestinal tract of pelagic and demersal
fish from the English Channel. Marine Pollution Bulletin, 67: 94 – 99.
7.
Foekema, E. M., De Gruijter, C., Mergia, M. T., van Franeker,
J. A., Murk, A. J. and Koelmans, A. A. (2013). Plastic in north sea fish. Environmental
Science & Technology, 47(15): 8818 – 8824.
8.
Rummel, C. D., Löder, M. G., Fricke, N. F., Lang, T.,
Griebeler, E. M., Janke, M. and Gerdts, G. (2016). Plastic ingestion by pelagic
and demersal fish from the North Sea and Baltic Sea. Marine Pollution
Bulletin, 102(1): 134 – 141.
9.
Barasarathi, J., Agamuthu, P., Emenike, C. U. and Fauziah, S.
H. (2014). Microplastic abundance in selected mangrove forest in Malaysia. In
Proceeding of the ASEAN Conference on Science and Technology, pp. 1 – 5.
10.
Noik, V. J. and Tuah, P. M. (2015). A first survey on the
abundance of plastics fragments and particles on two sandy beaches in Kuching,
Sarawak, Malaysia. In IOP Conference Series: Materials Science and
Engineering, 78(1): 012035.
11.
Ibrahim, Y. S. (2016). Microplastics ingestion by Scapharca cornea at Setiu Wetland,
Terengganu, Malaysia. Middle-East Journal of Scientific Research, 24:
2129 – 2136.
12.
Amin, N. M. and Hasan, F. A. (Eds.). (2003). Setiu Wetlands:
Tranquility amidst plenty, 1st Ed. Kolej Universiti Sains dan
Teknologi Malaysia: Kuala Terengganu, Malaysia.
13.
Rocha-Santos,
T. and Duarte, A. C. (2015). A critical overview of the
analytical approaches to the occurrence, the fate and the behavior of
microplastics in the environment. TrAC Trends
in Analytical Chemistry, 65: 47 – 53.
14.
Cole, M., Webb, H., Lindeque, P. K., Fileman, E. S.,
Halsband, C. and Galloway, T. S. (2014). Isolation of microplastics in
biota-rich seawater samples and marine organisms. Scientific Reports, 4:
4528.
15.
Charles, J., Ramkumaar, G. R., Azhagiri, S. and Gunasekaran,
S. (2009). FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced
nylon-66. Journal of Chemistry, 6: 23 – 33.
16.
Pavia D. L., Lampman G. M., Kriz G. S. and Vyvyan J. R.
(2008). Infrared Spectroscopy, In: Introduction to Spectroscopy. Brooks/Cole:
CA, USA.
17.
Mansur,
H. S., Sadahira, C. M., Souza, A. N. and Mansur, A. A. (2008). FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with
different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials
Science and Engineering: C, 28: 539 – 548.
18.
Nicodom Ltd (2007). Nicodom libraries: poly vinyl alcohol.
Retrieved from http://www.ftir-polymers.com. [Access date: 21st
March 2017].
19.
Hassan, C. M. and Peppas N. A. (2000). Structure and
applications of poly (vinyl alcohol) hydrogels produced by conventional
crosslinking or by freezing/thawing methods. Advance Polymer Science,
153: 37 – 65.
20.
Mansur H. S. Orélice R. L. and Mansur A. A. P (2004).
Characterization of poly (vinyl alcohol)/poly(ethylene glycol) hydrogels and
PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymers,
45: 7193 – 7202.
21.
Hennink W. E. and Nostrum C. F. (2002) Novel crosslinking
methods to design hydrogels. Advance Drug Delivery Reviews, 17: 13 – 36.
22.
Anastasopoulou, A., Mytilineou, C., Smith, C. J. and
Papadopoulou, K. N. (2013). Plastic debris ingested by deep-water fish of the
Ionian Sea (Eastern Mediterranean). Deep Sea Research Part I: Oceanographic
Research Papers, 74: 11 – 13.
23.
Battaglia,
P., Pedà, C., Musolino, S., Esposito, V., Andaloro, F. and Romeo, T. (2016). Diet and first documented data on plastic ingestion of Trachinotus ovatus L. 1758 (Pisces:
Carangidae) from the Strait of Messina (central Mediterranean Sea). Italian
Journal of Zoology, 83: 121 – 129.
24.
Romeo,
T., Pietro, B., Pedà, C., Consoli, P., Andaloro, F. and Fossi, M. C. (2015). First evidence of presence of plastic debris in stomach of large pelagic
fish in the Mediterranean Sea. Marine Pollution Bulletin, 95: 358 – 361.
25.
Brandão, M. L., Braga, K. M. and Luque, J. L. (2011). Marine debris
ingestion by Magellanic penguins, Spheniscus
magellanicus (Aves: Sphenisciformes), from the Brazilian coastal zone. Marine
Pollution Bulletin, 62: 2246 – 2249.
26.
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G.
L., Coppock, R., Sleight, V. and Thompson, R. C. (2014). The deep sea is a
major sink for microplastic debris. Royal Society Open Science, 1: 140 –
317.
27.
Andrady, A. L. (2011). Microplastic in the marine
environment. Marine Pollution Bulletin, 62: 1596 – 1605.
28.
Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin,
A., Galloway, T. and Thompson, R. (2011). Accumulation of microplastic on
shorelines worldwide: sources and sinks. Environmental Science &
Technology, 45(21): 9175 – 9179.
29.
Bråte, I. L. N., Eidsvoll, D. P., Steindal, C. C. and Thomas,
K. V. (2016). Plastic ingestion by Atlantic cod (Gadus morhua) from the
Norwegian coast. Marine Pollution Bulletin, 112(1): 105 – 110.
30.
Naidoo, T., Smit, A. J. and Glassom, D. (2016). Plastic
ingestion by estuarine mullet Mugil cephalus (Mugilidae) in an urban harbour,
KwaZulu-Natal, South Africa. African Journal of Marine Science, 38(1):
145 – 149.
31.
Pazos, R. S., Maiztegui, T., Colautti, D. C., Paracampo, A.
H. and Gómez, N. (2017). Microplastics in gut contents of coastal freshwater
fish from Río de la Plata estuary. Marine Pollution Bulletin, 122 (1–2):
85 – 90.
32.
Güven, O., Gökdağ, K., Jovanović, B. and Kıdeyş, A. E.
(2017). Microplastic litter composition of the Turkish territorial waters of
the Mediterranean Sea, and its occurrence in the gastrointestinal tract of
fish. Environmental Pollution, 223: 286 – 294.