Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1045 - 1053
DOI:
https://doi.org/10.17576/mjas-2017-2105-06
PREPARATION
OF DATE SEED ACTIVATION FOR SURFACTANT RECOVERY
(Penyediaan
Biji Kurma Teraktif Untuk Pemulihan Surfaktan)
Nurul’ Ain Binti
Jamion*, Nor Haziqah Binti Abd Hafiff, Nurul Huda Abd Halim,
Sheikh Ahmad
Izzaddin Sheikh Mohd Ghazali, Jamil Mohamed Sapari
Department of Chemistry, Faculty of Applied
Sciences,
Universiti Teknologi MARA, 72000 Kuala Pilah, Negeri
Sembilan, Malaysia
*Corresponding author: ain7059@ns.uitm.edu.my
Received: 16
August 2016; Accepted: 5 September 2017
Abstract
Surfactants
also known as surface-active agents are one of the water pollutants that can
lead to the deterioration of the environment. In this study, activated carbon
was prepared from date seeds (DAC) by using phosphoric acid as an activating
agent. The activation process was carried out at 500 °C for two hours. DAC was characterized
by Fourier-Transformed Infrared Spectrometer (FTIR), Field Emission Scanning
Electron Microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and
Nitrogen Adsorption at 77 K. The BET surface area of DAC was 1187 m2/g.
The adsorption capacities of surfactants (CTAB and TX-100) were determined.
This study showed that the adsorption capacity of CTAB (23.0724 mg/g) onto DAC
was greater than TX-100 (11.3868 mg/g). The adsorption process between both
surfactants onto DAC was done by physisorption through electrostatic forces. Thus,
this study showed that the date seeds have a greater tendency to be microporous
activated carbon and an adsorbent for surfactants recovery.
Keywords: activated carbon, phosphoric acid, date seed
Abstrak
Bahan aktif permukaan juga dikenali sebagai surfaktan adalah salah satu
bahan pencemar air yang boleh membawa kepada kemerosotan alam sekitar. Dalam
kajian ini, karbon teraktif telah disediakan daripada biji kurma (DAC) dengan
menggunakan asid fosforik sebagai ejen pengaktifan. Proses pengaktifan telah
dilakukan pada suhu 500 °C selama dua jam. Karbon teraktif (DAC) telah
dicirikan oleh Spektroskopi Inframerah Transformasi Fourier (FTIR), Mikroskopi
Medan Pancaran Imbasan Elektron (FESEM), Sebaran Tenaga Sinar-X (EDX) dan
penjerapan gas nitrogen pada suhu 77 K. Luas permukaan BET kawasan DAC adalah 1187 m2/g. Kapasiti penjerapan surfaktan (CTAB dan
TX-100) telah dikaji. Kajian ini menunjukkan bahawa kapasiti penjerapan CTAB
(23.0724 mg/g) pada DAC adalah lebih
tinggi daripada TX-100 (11.3868 mg/g). Proses penjerapan antara bagi kedua-dua
surfaktan DAC adalah secara penjerapan fizikal melalui daya elektrostatik. Oleh
itu, kajian ini menunjukkan bahawa biji kurma mempunyai kecenderungan yang
lebih besar sebagai karbon teraktif berliang mikro dan bahan penjerap yang baik
untuk pemulihan surfaktan.
Kata kunci: karbon teraktif, asid fosforik, biji kurma
References
1.
Hitam,
M. B. and Borhan, H. B. (2012). FDI, growth and the environment: Impact on quality
of life in Malaysia. Procedia - Social and Behavioral Sciences,
50: 333 – 342.
2.
Clara,
M., Scharf, S., Scheffknecht, C. and Gans, O. (2007). Occurrence of selected surfactants
in untreated and treated sewage. Water
Research, 41(19): 4339 – 4348.
3.
Scott,
M. J. and Jones, M. N. (2000). The biodegradation of surfactants in the environment.
Biochimica et Biophysica Acta (BBA) –
Biomembranes, 1508 (1–2): 235 – 251.
4.
Harwell,
J. H., Sabatini, D. A. and Knox, R. C. (1999). Surfactants for ground water remediation.
Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 151: 255 – 268.
5.
Aksu,
Z. (2005). Application of biosorption for the removal of organic pollutants: A review.
Process Biochemistry, 40 (3–4): 997 –
1026.
6.
Zsilák,
Z., Fónagy, O., Szabó-Bárdos, E., Horváth, O., Horváth, K., and Hajós, P. (2014).
Degradation of industrial surfactants by photocatalysis combined with ozonation.
Environmental Science and Pollution
Research, 21(19): 11126 – 11134.
7.
Schouten,
N., Van Der Ham, L. G. J., Euverink, G-J. and Haan, A. B. (2007). Selection and
evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing
water. Water Research, 41: 4233 – 4241.
8.
Kowalska,
I. (2008). Surfactant removal from water solutions by means of ultrafiltration
and ion-exchange. Desalination, 221: 351
– 357.
9.
Krivova,
M. G., Grinshpan, D. D. and Hedin, N. (2013). Adsorption of CnTABr surfactants
on activated carbons. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 436: 62 – 70.
10.
Al-Qodah,
Z. and Shawabkah, R. (2009). Production and characterization of granular activated
carbon from activated sludge. Brazilian
Journal of Chemical Engineering, 26: 127 – 136.
11.
Yahya,
M. A., Al-Qodah, Z. and Ngah, C. W. Z. (2015). Agricultural bio-waste materials
as potential sustainable precursors used for activated carbon production: A
review. Renewable and Sustainable Energy
Reviews, 46: 218 – 235.
12.
Qin,
C., Chen, Y. and Gao, J. M. (2014). Manufacture and characterization of activated
carbon from marigold straw (Tagetes
erecta L) by H3PO4 chemical activation. Materials Letters, 135: 123 – 126.
13.
Song,
M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z. and Huang, Y. (2013). The comparison
of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48: 250 – 256.
14.
Cheenmatchaya,
A. and Kungwankunakorn, S. (2014). Preparation of activated carbon derived from
rice husk by simple carbonization and chemical activation for using as gasoline
adsorbent. International Journal of
Environmental Science and Development: 171 – 175.
15.
Nouri,
H. and Ouederni, A. (2013). Modeling of the dynamics adsorption of phenol from
an aqueous solution on activated carbon produced from olive stones. International Journal of Chemical Engineering
and Applications, 4(4): 254 – 261.
16.
Amin,
N. K. (2008). Removal of Reactive Dye from Aqueous Solutions by Adsorption onto
Activated Carbons Prepared from Sugarcane Bagasse Pith. Desalination, 223(1–3): 152 – 161.
17.
Hadoun,
H., Sadaoui, Z., Souami, N., Sahel, D. and Toumert, I. (2013). Characterization
of mesoporous carbon prepared from date stems by H3PO4 chemical
activation. Applied Surface Science,
280: 1 – 7.
18.
Danish,
M., Hashim, R., Ibrahim, M. N. M. and Sulaiman, O. (2014). Optimized preparation
for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass and Bioenergy, 61: 167 – 178.
19.
Rahman,
M. S., Kasapis, S., Al-Kharusi, N. S. Z., Al-Marhubi, I. M. and Khan, A. J.
(2007). Composition characterisation and thermal transition of date pits powders.
Journal of Food Engineering, 80: 1 – 10.
20.
Haimour,
N. M. and Emeish, S. (2006). Utilization of date stones for production of activated
carbon using phosphoric acid. Waste
Management, 26: 651 – 660.
21.
The International Nut and Dried Fruit Council Foundation
(INC). (2017). Nuts & Dried
Fruits Statistical Yearbook 2016/2017. pp 56.
22.
Jamion,
N. A and Mohamed, S. M. (2014). Characterization of activated carbon from sugar
cane husk. Applied Mechanics and
Materials, (699): 1006 – 1011.
23.
Demiral,
I. and Aydin Ş. C. (2016). Preparation and characterisation of activated carbon
from pumpkin seed shell using H3PO4. Anadolu
University Journal of Science and Technology-A Applied Sciences and Engineering,
17(1): 125 – 138.
24.
Prahas,
D., Kartika, Y., Indraswati, N. and Ismadji, S. (2008). Activated carbon from jackfruit
peel waste by H3PO4 chemical activation: Pore structure
and surface chemistry characterization. Chemical Engineering Journal, 140(1–3): 32 – 42.
25.
Theydan,
S. K. and Ahmed, M. J. (2012). Adsorption of methylene blue onto biomass-based activated
carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic
studies. Journal of Analytical and
Applied Pyrolysis, 97: 116 – 122.
26.
Awwad,
N. S., El-Zahhar, A. A., Fouda, A. M. and Ibrahium, H. A. (2013). Removal of heavy
metal ions from ground and surface water samples using carbons derived from date
pits. Journal of Environment Chemical
Engineering, 1: 416 – 423.
27.
International
Union of Pure and Applied Chemistry (1994). Recommendations for the characterization
of porous solids. Pure and Applied
Chemistry, 66(8): 1739 – 1758.
28.
Puziy, A.
M., Poddubnaya, O. I., Martinez-Alonso, A., Suarez-Garcia, F. and Tascon, J. M.
D. (2002). Synthetic carbons activated with phosphoric acid, porous structure. Carbon, 40: 1507 – 1519.
29.
Martinez-Costa,
J. I. and Leyva-Ramos, R. (2017). Effect of surfactant loading and type upon
the sorption capacity of
organobentonite
towards pyrogallol. Colloids and Surfaces
A: Physicochemical Engineering Aspects, 520: 676 – 685.
30.
Huang, L.,
Maltesh, C. and Somasundaran, P. (1996). Adsorption behavior of cationic and
nonionic surfactant mixtures at the alumina–water interface. Journal of Colloid and Interface Science, 177: 222 – 228.