Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1045 - 1053

DOI: https://doi.org/10.17576/mjas-2017-2105-06

 

 

 

PREPARATION OF DATE SEED ACTIVATION FOR SURFACTANT RECOVERY

 

(Penyediaan Biji Kurma Teraktif Untuk Pemulihan Surfaktan)

 

Nurul’ Ain Binti Jamion*, Nor Haziqah Binti Abd Hafiff, Nurul Huda Abd Halim,

Sheikh Ahmad Izzaddin Sheikh Mohd Ghazali, Jamil Mohamed Sapari

 

Department of Chemistry, Faculty of Applied Sciences,

Universiti Teknologi MARA, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author:  ain7059@ns.uitm.edu.my

 

 

Received: 16 August 2016; Accepted: 5 September 2017

 

 

Abstract

Surfactants also known as surface-active agents are one of the water pollutants that can lead to the deterioration of the environment. In this study, activated carbon was prepared from date seeds (DAC) by using phosphoric acid as an activating agent. The activation process was carried out at 500 °C for two hours. DAC was characterized by Fourier-Transformed Infrared Spectrometer (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and Nitrogen Adsorption at 77 K. The BET surface area of DAC was 1187 m2/g. The adsorption capacities of surfactants (CTAB and TX-100) were determined. This study showed that the adsorption capacity of CTAB (23.0724 mg/g) onto DAC was greater than TX-100 (11.3868 mg/g). The adsorption process between both surfactants onto DAC was done by physisorption through electrostatic forces. Thus, this study showed that the date seeds have a greater tendency to be microporous activated carbon and an adsorbent for surfactants recovery. 

 

Keywords:  activated carbon, phosphoric acid, date seed

 

Abstrak

Bahan aktif permukaan juga dikenali sebagai surfaktan adalah salah satu bahan pencemar air yang boleh membawa kepada kemerosotan alam sekitar. Dalam kajian ini, karbon teraktif telah disediakan daripada biji kurma (DAC) dengan menggunakan asid fosforik sebagai ejen pengaktifan. Proses pengaktifan telah dilakukan pada suhu 500 °C selama dua jam. Karbon teraktif (DAC) telah dicirikan oleh Spektroskopi Inframerah Transformasi Fourier (FTIR), Mikroskopi Medan Pancaran Imbasan Elektron (FESEM), Sebaran Tenaga Sinar-X (EDX) dan penjerapan gas nitrogen pada suhu 77 K. Luas permukaan BET kawasan DAC adalah 1187 m2/g.  Kapasiti penjerapan surfaktan (CTAB dan TX-100) telah dikaji. Kajian ini menunjukkan bahawa kapasiti penjerapan CTAB (23.0724 mg/g)  pada DAC adalah lebih tinggi daripada TX-100 (11.3868 mg/g). Proses penjerapan antara bagi kedua-dua surfaktan DAC adalah secara penjerapan fizikal melalui daya elektrostatik. Oleh itu, kajian ini menunjukkan bahawa biji kurma mempunyai kecenderungan yang lebih besar sebagai karbon teraktif berliang mikro dan bahan penjerap yang baik untuk pemulihan surfaktan. 

 

Kata kunci:  karbon teraktif, asid fosforik, biji kurma

 

References

1.       Hitam, M. B. and Borhan, H. B. (2012). FDI, growth and the environment: Impact on quality of life in Malaysia.  Procedia - Social and Behavioral Sciences, 50: 333 – 342.

2.       Clara, M., Scharf, S., Scheffknecht, C. and Gans, O. (2007). Occurrence of selected surfactants in untreated and treated sewage. Water Research, 41(19): 4339 – 4348.

3.       Scott, M. J. and Jones, M. N. (2000). The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1508 (1–2): 235 – 251.

4.       Harwell, J. H., Sabatini, D. A. and Knox, R. C. (1999). Surfactants for ground water remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151: 255 – 268.

5.       Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 40 (3–4): 997 – 1026.

6.       Zsilák, Z., Fónagy, O., Szabó-Bárdos, E., Horváth, O., Horváth, K., and Hajós, P. (2014). Degradation of industrial surfactants by photocatalysis combined with ozonation. Environmental Science and Pollution Research, 21(19): 11126 – 11134.

7.       Schouten, N., Van Der Ham, L. G. J., Euverink, G-J. and Haan, A. B. (2007). Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water. Water Research, 41: 4233 – 4241.

8.       Kowalska, I. (2008). Surfactant removal from water solutions by means of ultrafiltration and ion-exchange. Desalination, 221: 351 – 357.

9.       Krivova, M. G., Grinshpan, D. D. and Hedin, N. (2013). Adsorption of CnTABr surfactants on activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436: 62 – 70.

10.    Al-Qodah, Z. and Shawabkah, R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering, 26: 127 – 136.

11.    Yahya, M. A., Al-Qodah, Z. and Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46: 218 – 235.

12.    Qin, C., Chen, Y. and Gao, J. M. (2014). Manufacture and characterization of activated carbon from marigold straw (Tagetes erecta L) by H3PO4 chemical activation. Materials Letters, 135: 123 – 126.

13.    Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z. and Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48: 250 – 256.

14.    Cheenmatchaya, A. and Kungwankunakorn, S. (2014). Preparation of activated carbon derived from rice husk by simple carbonization and chemical activation for using as gasoline adsorbent. International Journal of Environmental Science and Development: 171 – 175.

15.    Nouri, H. and Ouederni, A. (2013). Modeling of the dynamics adsorption of phenol from an aqueous solution on activated carbon produced from olive stones. International Journal of Chemical Engineering and Applications, 4(4): 254 – 261.

16.    Amin, N. K. (2008). Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Sugarcane Bagasse Pith. Desalination, 223(1–3): 152 – 161.

17.    Hadoun, H., Sadaoui, Z., Souami, N., Sahel, D. and Toumert, I. (2013). Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Applied Surface Science, 280: 1 – 7.

18.    Danish, M., Hashim, R., Ibrahim, M. N. M. and Sulaiman, O. (2014). Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass and Bioenergy, 61: 167 – 178.

19.    Rahman, M. S., Kasapis, S., Al-Kharusi, N. S. Z., Al-Marhubi, I. M. and Khan, A. J. (2007). Composition characterisation and thermal transition of date pits powders. Journal of Food Engineering, 80: 1 – 10.

20.    Haimour, N. M. and Emeish, S. (2006). Utilization of date stones for production of activated carbon using phosphoric acid. Waste Management, 26: 651 – 660.

21.    The International Nut and Dried Fruit Council Foundation (INC). (2017). Nuts & Dried Fruits Statistical Yearbook 2016/2017. pp 56.

22.    Jamion, N. A and Mohamed, S. M. (2014). Characterization of activated carbon from sugar cane husk. Applied Mechanics and Materials, (699): 1006 – 1011.

23.    Demiral, I. and Aydin Ş. C. (2016). Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4. Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 17(1): 125 – 138.

24.    Prahas, D., Kartika, Y., Indraswati, N. and Ismadji, S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140(1–3): 32 – 42.

25.    Theydan, S. K. and Ahmed, M. J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97: 116 – 122.

26.    Awwad, N. S., El-Zahhar, A. A., Fouda, A. M. and Ibrahium, H. A. (2013). Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits. Journal of Environment Chemical Engineering, 1: 416 – 423.

27.    International Union of Pure and Applied Chemistry (1994). Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 66(8): 1739 – 1758.

28.    Puziy, A. M., Poddubnaya, O. I., Martinez-Alonso, A., Suarez-Garcia, F. and Tascon, J. M. D. (2002). Synthetic carbons activated with phosphoric acid, porous structure. Carbon, 40: 1507 1519.

29.    Martinez-Costa, J. I. and Leyva-Ramos, R. (2017). Effect of surfactant loading and type upon the sorption capacity of organobentonite towards pyrogallol. Colloids and Surfaces A: Physicochemical Engineering Aspects, 520: 676 685.

30.    Huang, L., Maltesh, C. and Somasundaran, P. (1996). Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina–water interface. Journal of Colloid and Interface Science, 177: 222 228.

 




Previous                    Content                    Next