Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1008 - 1015

DOI: https://doi.org/10.17576/mjas-2017-2105-02

 

 

 

SYNTHESIS AND X-RAY SINGLE CRYSTAL STUDY OF 3-DIBUTYNYL AND 4-DIPENTYNYL PYRIDINE-2,6-DICARBOXYLATE

 

(Sintesis dan Kajian Sinar-X Hablur Tunggal 3-dibutinil dan 4-dipentinil piridina-2,6-dikarboksilat)

 

Nawwar Hanun Abdul Malek 1, Mohammad Fadzlee Ngatiman2, Bohari M. Yamin1, Nurul Izzaty Hassan1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

2Centre for Research and Instrumentation Management,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: drizz@ukm.edu.my

 

 

Received: 7 March 2017; Accepted: 19 July 2017

 

 

Abstract

Two pyridine-2,6-dicarboxylates each containing butynyl and pentynyl at position 2 and 6 were synthesized by esterification of 2,6-pyridinedicarbonyl dichloride with N-alkyne alcohol. All compounds were characterized by using nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR) and mass spectrometry (MS) techniques. Crystallographic studies showed that both compounds, 3-dibutynyl pyridine-2,6-dicarboxylate (3a) and 4-dipentynyl pyridine-2,6-dicarboxylate (3b) crystallized in monoclinic system with same space group of C 2/c.

 

Keywords:  diester macrocyclic, esterification, X-Ray structural study

 

Abstrak

Dua sebatian piridina dikarboksilat, 3-dibutinil dan 4-dipentinil pada kedudukan 2 dan 6 telah berjaya disintesiskan dengan tindak balas pengesteran di antara 2,6-piridinadikarbonil diklorida dengan N-alkuna alkohol. Setiap sebatian berjaya dicirikan dengan teknik spektroskopi resonans magnetik nuklear (RMN), infra merah (IR) dan spektrometri jisim (MS). Kajian kristalografi menunjukkan sebatian 3-dibutinil piridina-2,6-dikarboksilat (3a) dan 4-dipentinil piridina-2,6-dikarboksilat (3b) terhablur dalam sistem monoklinik dengan kumpulan ruang C 2/c. 

 

Kata kunci:  makrosiklik diester, tindak balas pengesteran, kajian struktur sinar-X

 

References

1.       Newkome, G. R., Sauer, J. S., Roper, J. M. and Hager, D. C. (1976). Construction of synthetic macrocyclic compounds possesing subheterocyclic rings, specifically pyridine, furan and thiophene. Chemical Review, 77: 513 – 597.

2.       Garren E. Maas, G. E., Bradshaw, J. S., Izatt, R. M. and Christensen, J. J. (1977).  Synthesis of a new series of macrocyclic polyether-diester ligands. Journal of Organic Chemistry, 42: 3937 – 3941.

3.       Bradshaw, J. S. and Thompson, M. D. (1978). Synthesis of macrocyclic polyether-diester compounds with an aromatic subcyclic unit. Journal of Organic Chemistry, 43: 2456 – 2460.

4.       Potts, K. T., Cipullo, M. J., Ralli, P. and Theodoridis, G. (1982). Synthesis of 2,6-disubstituted pyridines, polypyridinyls and annulated pyridines. Journal of Organic Chemistry, 47: 3027 – 3038.

5.       Zhao, H. and Hua, W. (2000). Synthesis and characterization of pyridine-based polyamido-polyester optically active macrocycles and enantiomeric recognition for d- and l- amico acid methyl ester hydrochloride. Journal of Organic Chemistry, 65: 2933 – 2938.

6.       Vedernikov, A. N., Pink, M. and Caulton, K. G. (2003). Design and synthesis of tridentate facially chelating ligands of the [2.n.1]-(2,6)-pyridinophane family. Journal of Organic Chemistry, 68: 4806 –4814.

7.       Newkome, G. R., Patri, A. K., Holder, E. and Schubert, U. S. (2004). Synthesis of 2,2’-bipyridines: versatile building blocks for sexy architectures and functional nanomaterials. European Journal of Organic Chemistry, 2004(2): 235 – 254.

8.       Kolthoff, I. M. (1979). Application of macrocyclic compounds in chemical analysis. Analytical Chemistry, 51: 1 – 22.

9.       Bradshaw, J. S., Maas, G. E., Lamb, J. D., Izatt, R. M. and Christensen, J. J. (1980). Cation complexing properties of synthetic macrocyclic polyether-diester ligands containing the pyrdine subcyclic unit. Journal of the American Chemical Society, 2: 467 – 474.

10.    Al-Salahi, R. A., Al-Omar, M. A. and Amr, A. E. E. (2010). Synthesis of new macrocyclic polyamides as antimicrobial agent candidates. Molecules, 15: 6588 – 6597.

11.    El-Salam, O. I. A., Al-Omar, M. A., Fayed, A. A., Flefel, E. M. and Amr, A. E. E. (2012). Synthesis of new macrocyclic polyamides as antimicrobial agent candidates. Molecules, 17: 14510 – 14521.

12.    Kuz’min, V. E., Lozitsky, V. P., Kamalov, G. L., Lozitskaya, R. N., Zheltvay, A. I., Fedtchouk, A. S. and Kryzhanovsky, D. N. (2000). Analysis of the structure – anticancer activity relationship in a set of Schiff bases of macrocyclic 2,6-bis(2- and 4-formylaryloxymethyl)pyridines. Acta Biochimica Polonica, 47: 867 – 875.

13.    Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. and Marzano, C. (2003). Advances in copper complexes as anticancer agents. Chemical Review, 114(1): 815 – 862.

14.    Rusconi, S., Cicero, M. L., Viganò, O., Sirianni, F., Bulgheroni, El., Ferramosca, S., Bencini, A., Bianchi, A., Ruiz, L., Cabrera, C., Martinez-Picado, J., Supuran, C. T. and Galli, M. (2009). New macrocyclic amines showing activity as HIV entry inhibitors against wild type and multi-drug resistant viruses. Molecules, 14: 1927 – 1937.

15.    Fürstner,A., Guth, O., Rumbo, A. and Seidel, G. (1999). Ring closing alkyne metathesis. Comparative investigation of two different catalyst systems and application to the stereoselective synthesis of olfactory lactones, azamacrolides, and the macrocyclic perimeter of the marine alkaloid nakadomarin A. Journal of American Chemical Society, 121: 11108 – 11113.

 




Previous                    Content                    Next