Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 996 - 1007

DOI: https://doi.org/10.17576/mjas-2017-2105-01

 

 

 

PERFORMANCE OF SOLAR PHOTOCATALYSIS AND PHOTO-FENTON DEGRADATION OF PALM OIL MILL EFFLUENT

 

 (Prestasi Fotopemangkinan dan Degradasi Foto-Fenton Menggunakan Sinar Suria ke atas Efluen Kilang Minyak Kelapa Sawit)

 

Devagi Kanakaraju1*, Nurul Liyana Binti Ahmad1, Noorfaezah Binti Mohd Sedik1, Sylvester Gan Hsien Long1, Tay Meng Guan1, Lim Ying Chin2

 

1Department of Chemistry, Faculty of Resource Science and Technology,

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  kdevagi@unimas.my

 

 

Received: 16 August 2016; Accepted: 5 April 2017

 

 

Abstract

Palm oil mill effluent (POME) contains significant amounts of organic matter, solids, and grease or oil, which requires appropriate treatment prior to being discharged into the environment. In this study, solar radiation was investigated as a possible source of photon in the solar TiO2 and ZnO photocatalysis, and solar photo-Fenton treatments to reduce the chemical oxygen demand (COD) in POME. The results indicated that solar photo-Fenton was more efficient in reducing COD levels compared to dark Fenton and indoor photo-Fenton. The highest removal was recorded at 89% in the presence of 1:30 ratio of Fe2+:H2O2 under acidic pH (~2.8) after 3 hours of solar exposure. Increased concentrations of H2O2 have greatly influenced the COD removal. Additionally, solar TiO2 photocatalysis (pH~3.7; TiO2 = 0.1 g/L) has outperformed solar photolysis and solar ZnO photocatalysis in reducing COD levels in POME. With successive increase of TiO2 from 0.02 to 0.1 g/L, the removal of COD had linearly increased from 54.3% to 88.5% after 5 hours of solar exposure. Based on the investigated conditions, the optimum TiO2 concentration of 0.1 g/L was concluded. In conclusion, solar TiO2 photocatalysis and solar photo-Fenton can be applied as possible means to reduce the organic loads in POME.

 

Keywords:  advanced oxidation process, organic matter, reduction, solar, titanium dioxide

 

Abstrak

Efluen kilang minyak kelapa sawit (POME) mengandungi jumlah bahan organik, pepejal dan gris atau minyak yang ketara yang memerlukan rawatan sesuai sebelum ia boleh disalurkan ke persekitaran. Dalam kajian ini, sinar suria dikaji sebagai salah satu sumber foton dalam fotopemangkinan TiO2 dan ZnO sinar suria dan rawatan foto-Fenton menggunakan sinar suria untuk mengurangkan keperluan oksigen kimia (COD) dalam POME. Keputusan kajian menunjukkan foto-Fenton menggunakan sinar suria adalah lebih berkesan dalam menurunkan COD berbanding dengan Fenton bercahaya dalam dan Fenton tanpa cahaya. Penyingkiran tertinggi yang dicatatkan ialah 89% menggunakan nisbah Fe2+:H2O2 sebanyak 1:30 dalam pH berasid (~2.8) selepas pendedahan kepada sinar suria selama 3 jam. Peningkatan kepekatan H2O2 sangat mempengaruhi penyingkiran COD. Tambahan pula, fotopemangkinan TiO2 menggunakan sinar suria (pH~3.7; TiO2 = 0.1 g/L) menunjukkan prestasi yang lebih baik berbanding dengan fotolisis dan fotopemangkinan ZnO menggunakan sinar suria dalam mengurangkan kandungan COD dalam POME. Peningkatan TiO2 secara berturutan dari 0.02 ke 0.1 g/L meningkatkan penyingkiran COD secara linear daripada 54.3% ke 88.5% selepas pendedahan kepada sinar suria selama 5 jam. Berdasarkan keadaan eksperimen yang dikaji dapat dirumuskan bahawa kepekatan optimum TiO2 ialah sebanyak 0.1 g/L. Kesimpulannya, teknik fotopemangkinan TiO2 sinar suria dan Fenton sinar suria boleh digunakan untuk mengurangkan kandungan organik dalam POME.

 

Kata kunci:  proses pengoksidaan termaju, bahan organik, penurunan, sinar suria, titanium dioksida

 

References

1.       Wu, T. Y., Mohammad, A. W., Jahim, J. M. and Anuar, N. (2010). Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management, 91(7): 1467 1490.

2.       Ahmad, A. L., Ismail, S. and Bhatia, S. (2005). Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology. Environmental Science & Technology, 39(8): 2828 2834.

3.       Ujang, Z., Salmiati, S. and Salim, M. R. (2010). Microbial biopolimerization production from palm oil mill effluent (POME). Institute of Environmental and Water Resource Management (IPASA), Universiti Teknologi Malaysia.

4.       Setiadi, T. and Djajadiningrat, A. (1996). Palm oil mill effluent treatment by anaerobic baffled reactors: recycle effects and biokinetic parameters. Water Science and Technology, 34 (11): 59 66.

5.       Rupani, P. F., Singh, R. P., Ibrahim, M. H. and Esa, N. (2010). Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Applied Sciences Journal, 11(1): 70 81.

6.       Legrini, O., Oliveros, E. and Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93(2): 671 698.

7.       Soares, P. A., Silva, T. F., Manenti, D. R., Souza, S. M., Boaventura, R. A. and Vilar, V. J. (2014). Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes. Environmental Science and Pollution Research, 21(2): 932 945.

8.       Klavarioti, M., Mantzavinos, D. and Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2): 402 417.

9.       Kanakaraju, D., Motti, C. A., Glass, B. D. and Oelgemöller, M. (2014). Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environmental Chemistry, 11(1): 51 62.

10.    Lucas, M. S., Peres, J. A., Amor, C., Prieto-Rodríguez, L., Maldonado, M. I. and Malato, S. (2012). Tertiary treatment of pulp mill wastewater by solar photo-Fenton. Journal of Hazardous Materials, 225: 173 181.

11.    Babuponnusami, A. and Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): 557 572.

12.    Chong, M. N., Jin, B., Chow, C. W. and Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10): 2997 3027.

13.    Lam, S. M., Sin, J. C., Abdullah, A. Z. and Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination and Water Treatment, 41(1-3): 131 169.

14.    Vilar, V. J., Pinho, L. X., Pintor, A. M. and Boaventura, R. A. (2011). Treatment of textile wastewaters by solar-driven advanced oxidation processes. Solar Energy, 85 (9): 1927 1934.

15.    Pereira, J. H., Reis, A. C., Queirós, D., Nunes, O. C., Borges, M. T., Vilar, V. J. and Boaventura, R. A. (2013). Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Science of the Total Environment, 463: 274 283.

16.    Chekir, N., Benhabiles, O., Tassalit, D., Laoufi, N. A. and Bentahar, F. (2015). Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO. Desalination and Water Treatment, 57(13): 1 7.

17.    Aris, A., Siew, O. B., Kee, K. S. and Ujang, Z. (2008). Tertiary treatment of palm oil mill effluent using fenton oxidation. Malaysian Journal of Civil Engineering, 20(1): 12 25.

18.    Ng, K. H. and Cheng, C. K. (2015). A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: Kinetics of POME degradation and gaseous product formations. RSC Advances, 5(65): 53100 53110.

19.    American Public Health Association (1999), American Water Works Association, Water Pollution Control Federation, & Water Environment Federation. Standard Methods for the Examination of Water and Wastewater (Vol. 2). 18th Ed. American Public Health Association.

20.    Carp, O., Huisman, C. L. and Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1): 33 177.

21.    Badawy, M. I., Gohary, F. E., Ghaly, M. Y. and Ali, M. E. M. (2009). Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation. Journal of Hazardous Materials, 169(1): 673 679.

22.    Gaya, U. I. and Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1): 1 12.

23.    Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M. and Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1): 65 82.

24.    Raj, K. and Viswanathan, B. (2009). Effect of surface area, pore volume and particle size of p25 titania on the phase transformation of anatase to rutile. Indian Journal of Chemistry, 48: 1378 1382.

25.    Rojviroon, O., Rojviroon, T. and Sirivithayapakorn, S. (2014). Study of COD removal efficiency from synthetic wastewater by photocatalytic process. Environmental Engineering Research, 19(3): 255 259.

26.    Vineetha, M. N., Matheswaran, M. and Sheeba, K. N. (2013). Photocatalytic colour and COD removal in the distillery effluent by solar radiation. Solar Energy, 91: 368 373.

27.    Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J. and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catalysis Today, 147(1): 1 59.

28.    Oturan, M. A. and Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44 (23): 2577 2641.

29.    Manenti, D. R., Soares, P. A., Silva, T. F., Módenes, A. N., Espinoza-Quiñones, F. R., Bergamasco, R., Boaventura, R.A. and Vilar, V. J. (2015). Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environmental Science and Pollution Research, 22(2): 833 845.

30.    Klamerth, N., Rizzo, L., Malato, S., Maldonado, M. I., Agüera, A. and Fernández-Alba, A. R. (2010). Degradation of fifteen emerging contaminants at μgL−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 44(2): 545 554.

 




Previous                    Content                    Next