Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 762 - 769

DOI: https://doi.org/10.17576/mjas-2017-2104-01

 

 

 

Chemical sensor for hydrazine detection using polyaniline thin film

 

(Sensor Kimia Untuk Mengesan Hidrazin Dengan Menggunakan Polyanilina

Berbentuk Filem Nipis)

 

Kavirajaa Pandian Sambasevam1, Sharifah Mohamad2, Sook-Wai Phang3*

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, Negeri Sembilan Branch,Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Department of Chemistry, Faculty of Science,

University of Malaya, 50603 Kuala Lumpur, Malaysia

3Department of Physical Science, Faculty of Applied Sciences,

Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia

 

*Corresponding author:  pinkyphang@gmail.com

 

 

Received: 17 August 2016; Accepted: 15 June 2017

 

 

Abstract

Polyaniline (PANI) doped with dioctyl sodium sulfosuccinate (AOT) was prepared by chemical oxidative polymerization method. This PANI thin film was used as an effective chemical sensor at room temperature for different concentrations of hydrazine (10, 100, 1000 and 10000 ppm) detection. The PANI chemical sensor has shown a good recyclability up to 10 cycles with 2 minutes response time and immediate recovery time. The sensor response was proved by red-shift of the UV-Vis at 780 nm which indicates the transformation of emeraldine salt (ES, conducting state) to leucoemeraldine salt (LES, non-conducting state) of PANI. Besides that, the intensity ratio of IQuinoid/IBenzenoid at FTIR spectroscopy can explicit the predominating benzenoid species that formed as a result of ES interaction with hydrazine. In this study, a very simple and inexpensive sensor setup has been successfully developed for hydrazine detection compare to the complicated traditional chemical sensors.

 

Keywords:  polyaniline, hydrazine, dioctyl sodium sulfosuccinate, chemical sensor, conductivity

 

Abstrak

Polianilina (PANI) yang didopkan dengan natrium dioktil sulfosuksinat (AOT) telah disediakan melalui kaedah pempolimeran pengoksidaan kimia. Filem nipis PANI telah digunakan sebagai sensor kimia pada suhu bilik untuk mengesan hidrazin dengan kepekatan yang berbeza (10, 100, 1000 dan 10000 ppm). Sensor kimia PANI telah menunjukkan penggunaan semula sehingga 10 kali dengan masa 2 minit dengan masa pemulihan segera. Keputusan sensor telah dibuktikan dengan peralihan-merah UV-Vis pada 780 nm yang menunjukkan transformasi garam emeraldina (ES, konduktif) kepada garam leukoemeraldina (LES, tidak konduktif). Selain itu, nisbah keamatan IKuinoid / IBenzenoid di FTIR spektroskopi telah menjelaskan spesies benzenoid lebih banyak sebagai hasil interaksi ES dengan hidrazin. Dalam kajian ini, penyediaan sensor yang sangat mudah dan murah telah berjaya diperkembangkan untuk mengesan hidrazin berbanding dengan sensor kimia tradisional yang rumit.

 

Kata kunci:  polianilina, hidrazin, natrium dioktil sulfosuksinat, sensor kimia, konduktiviti

 

References

1.       Cui, G., Lee, J. S., Kim, S. J., Nam, H., Cha, G. S. and Kim, H. D. (1998). Potentiometric pCO2 sensor using polyaniline-coated pH- sensitive electrodes. Analyst, 123: 1855 – 1859.

2.       Karyakn, A. A., Lukachona, L. V., Karyakina, E. E., Orlov, A. V. and Kappachora, G.P. (1999). The improved potentiometric pH response of electrodes modified with processible polyaniline. Application to glucose biosensor. Analytical Communications, 36: 153 – 156.

3.       Wu, C. G., Bein, T. (1994), Conducting polyaniline filaments in a mesoporous channel host. Science 264: 1757-1759.

4.       Ahmad, N. and MacDiarmid, A. G. (1996). Inhibition of corrosion of steels with the exploitation of conducting polymers. Synthetic Metals, 78: 103 – 110.

5.       Rose, T. L., Antonio, S. D., Jilson, M. H., Kron, A.B., Suresh, R. and Wang, F. (1997). A microwave shutter using conductive polymers. Synthetic Metals, 85: 1439 – 1440.

6.       MacDiarmid, A. G., (1997). Polyaniline and polypyrrole: Where are we headed? Synthetic Metals, 84: 27 – 34.

7.       MacDiarmid, A. G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Somasiri, N. L. D., Wu, W. Q. and Yaniger, S. I. (1985). Polyaniline: Interconversion of metallic and insulating forms. Molecular Crystals and Liquid Crystals, 121: 173 – 180.

8.       Wang, X., Shao, M., Shao, G., Wu, Z. and Wang, S. (2009). A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch. Journal of Colloid Interface and Science, 332: 74 – 77.

9.       Koul, S., Dhawan, S. K., Chandra, S. and Chandra, R. (1997). Conducting polyaniline as a sensor for the detection of HCl vapors. Indian Journal of Chemistry, 36A: 901 – 904.

10.    Zheng, W., Hu, L., Yoon, L. S. L. and Wong, K.Y. (2016) Copper nanoparticles/polyaniline/graphene composite as highly sensitive electrochemical glucose sensor. Journal of Electroanalytical Chemistry, 781: 155 – 160.

11.    Umar, A., Rahman M. M., Kim, S. H. and Han, Y. B. (2008). Zinc oxide nanonail based chemical sensor for hydrazine detection. Chemical Communication, 2: 166 – 168.

12.    Golabi, S. M. and Zare, H. R. (1999). Electrocatalytic oxidation of hydrazine at a chlorogenic acid (CGA) modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 465: 168 – 176.

13.    Omar, F. S., Numan, A., Duraisamy, N. and Bashir, S. (2017). A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. Journal of Alloys and Compounds, 716: 96 – 105.

14.    Umar, A., Abaker, M., Faisal, M., Hwang, S. W., Baskoutas, S. and Al-Sayari, S. A. (2011). High-yield synthesis of well crystalline α-Fe2O3 nanoparticles: Structural, optical and photocatalytic properties. Journal of Nanoscience and Nanotechnology, 11: 3474 – 3480.

15.    Ibrahim, A. A., Dar, G. N., Zaidi, S. A., Umar, A., Abaker, M., Bouzid, H. and Baskouts, S. (2012). Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. Talanta, 93: 257 – 263.

16.    Ravichandran, K. and Baldwin, R. P. (1983), Liquid chromatographic determination of hydrazines with electrochemically pretreated glassy carbon electrodes. Analytical Chemistry, 55: 1782 – 1786.

17.    Kamyabi, M. A., Shahabi, S., Hosseini, M. H. (2008), Electrocatalytic oxidation of hydrazine at a cobalt (II) Schiff-base-modified carbon paste electrode. Journal of Electrochemical Society, 155: 8 – 12.

18.    Maleki, N., Safavi, A. and Tajabadi, F. (2008). Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Analytica Chimica Acta, 611: 151 – 155.

19.    Nassef, H. M., Radi, A. E. and O’Sullivan, C. K. (2006). Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. Journal of Electroanalytical Chemistry, 592: 139 – 146.

20.    Zare, H. R. and Nasirizadeh, N. (2007), Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine. Electrochimica Acta, 52: 4153 – 4160.

21.    Zheng, L. and Song, J. F. (2009). Curcumin multi-walled carbon nantubes modiefied galssy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sensors and Actuators B-Chemical, 135: 650 – 655.

22.    Koul, S., Chandra, R. and Dhawan, S. K. (2001). Conducting polyaniline composite: a reusable sensor material for aqueous ammonia. Sensors and Actuators B-Chemical, 75: 151 – 159.

23.    Tai, H., Jiang, Y., Xie, G. and Yu, J. (2010). Preparation, characterization and comparative NH3­-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin film.  Journal of Materials Science and Technology, 26: 605 – 613.

24.    Runge, M. B., Dadsetan, M., Baltrusaitis, J., Knight, A. M., Ruesink, T., Lazcano, E. A., Lu, L., Windebank, A. J. and Yaszemski, M. J. (2010). The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials, 31: 5916 – 5926.

25.    Virji, S., Kaner, R. B. and Weiller, B. H. (2005). Hydrazine detection by polyaniline using fluorinated alcohol additives. Chemistry of Materials, 17: 1256 – 1260.

26.    Xing, S., Zhao, C., Jing, S., Wu, Y. and Wang, Z. (2006). Morphology and gas sensing behavior of in situ polymerized nanostructured polyaniline films. European Polymer Journal, 42: 2730 – 2735.

27.    Choi, B. G., Park, H. S., Im, H. S. and Kim, Y. J. (2008). Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC. Journal of Membrane Science, 324: 102 – 107.

 




Previous                    Content                    Next