Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1159 - 1170

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-23

 

 

 

MONTHLY ANALYSIS OF PM10 IN AMBIENT AIR OF KLANG VALLEY, MALAYSIA

 

(Analisis PM10 Bulanan di dalam Udara di Lembah Klang, Malaysia)

 

Mohd Asrul Jamalani1, Ahmad Makmom Abdullah1,2*, Azman Azid3,4, Mohammad Firuz Ramli2,

Mohd Rafee Baharudin5, Mahmud Mohammed Bose1, Rashieda Elawad Elhadi1,

Khaleed Ali Ahmed Ben Youssef1, Azadeh Gnadimzadeh1, Danladi Yusuf Gumel1

 

1Air Quality and Ecophysiology Laboratory, Faculty of Environmental Studies

 2Department of Environmental Sciences, Faculty of Environmental Studies

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3UniSZA Science and Medicine Foundation Centre,

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia

4Faculty Bioresources and Food Industry,

Universiti Sultan Zainal Abidin, Tembila Campus, 22200 Besut, Terengganu, Malaysia

5Department of Community Health, Faculty of Medicine and Health Sciences,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: amakmom@upm.edu.my

 

 

Received: 14 April 2015; Accepted: 3 August 2016

 

 

Abstract

The urbanization in Klang Valley, Peninsular Malaysia over the last decades has induce the atmospheric pollution’s risk resulted to negative impact on the environment. The aims of this paper are to identify the spatial-temporal relationship of particulate matter (PM10), to determine the characteristic of each location and to classify hierarchical of the location in relation to their impact on PM10 concentration in Klang Valley. The Spearman correlation test indicate that there was strong significant relationship between all the locations (> 0.7; p < 0.001) and moderate relationship between Petaling Jaya-Kajang and Kajang-Shah Alam (< 0.7; p < 0.001). The principal component analysis (PCA) identifies all four locations have been affected by PM10 which were determined as one of the pollutant that deteriorated the air quality. Cluster analysis (CA) has classified the PM10 pattern into three (3) different classes; Class 1 (Klang), Class 2 (Petaling Jaya and Kajang) and Class 3 (Shah Alam) based on location.  Further analysis of CA would be able to classify the PM10 classes into groups depending on their dissimilarities characteristic. Thus, possible period of extreme air quality degradation could be identified. Therefore, statistical and envirometric techniques have proved the impact of the various location on increasing concentration of PM10.

 

Keywords:  particulate matter, Spearman correlation test, principal component analysis, cluster analysis

 

Abstrak

Proses pembandaran di Lembah Klang, Semenanjung Malaysia sedekad lalu telah mendorong kepada risiko pencemaran atmosfera yang memberi impak negatif kepada alam sekitar. Kajian ini dilakukan bertujuan untuk mengenalpasti hubungkait antara ruang dan tempoh bagi partikel terampai (PM10), menentukan ciri – ciri setiap lokasi dan menentukan pengkelasan hirarki lokasi berhubungan dengan impak kepekatan PM10 di Lembah Klang. Ujian korelasi Spearman menunjukkan hubungkait yang kuat antara semua lokasi (> 0.7; p < 0.001) dan hubungan yang sederhana antara Petaling Jaya-Kajang and Kajang-Shah Alam (< 0.7; p < 0.001). Analisis komponen utama (PCA) menentukan semua empat lokasi yang telah terjejas dengan PM10 iaitu antara bahan pencemar yang menjejaskan kualiti udara. Analisis kluster (CA) mengelaskan pola PM10 kepada tiga (3) kelas berlainan; Kelas 1 (Klang), Kelas 2 (Petaling Jaya dan Kajang) serta Kelas 3 (Shah Alam) berdasarkan lokasi. Analisis lanjutan CA membolehkan pengkelasan kelas PM10 kepada kumpulan bergantung kepada ketidaksamaan ciri. Justeru, kemungkinan tempoh kemerosotan kualiti udara yang melampau dapat dikenalpasti. Oleh itu, teknik statistik dan envirometrik telah membuktikan impak pelbagai lokasi terhadap peningkatan kepekatan PM10.

 

Kata kunci:  partikel terampai, ujian korelasi Spearman, analisis komponen utama, analisis kluster

 

References

1.       Schwartz, J., Dockery, D. W., Neas, L. M., (1996). Is daily mortality associated specifically with fine particles.Journal of the Air and Waste Management Association 46(10): 927–939.

2.       Shao, Y. P., (2000). Physics and modelling of wind erosion. Atmospheric and oceanographic sciences library, Sydney.

3.       Abas, M. R. B., Oros, D. R. and Simoneit, B. R. T. (2004). Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55: 1089 – 1095.

4.       Afroz, R., Hassan, M. N. and Ibrahim, N. A. (2003). Review of air pollution and health impacts in Malaysia. Environmental Research. 92: 71 – 77.

5.       Azmi, S. Z., Latif, M. T., Ismail, A. S., Juneng, L., Jemain, A. A. (2010). Trend and status of air quality at three  different  monitoring  stations  in the Klang Valley, Malaysia. Air Quality, Atmosphere and Health, 3:  53 – 64.

6.       Gurjar, B. R., Butler, T. M., Lawrence, M. G. and Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42: 1593 – 1606.

7.       Ozden, O., Dogeroglu, T. and Kara, S., (2008). Assessment of ambient air quality in Eskisehir, Turkey. Environment International, 34: 678 – 687.

8.       Nawrot, T. S., Torfs, R., Fierens, F., De Henauw, S., Hoet, P. H. and Van Kersschaever, G. (2007). Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: Evidence from a heavily polluted region in Western Europe. Epidemiology and Community Health, 61:146 – 149.

9.       Mott, J. A., Mannino, D. M., Alverson, C. J., Kiyu, A., Hashim, J., Lee, Tee., Falter, K., Redd, S. C. (2005). Cardiorespiratory hospitalizations associated with smoke exposure during the 1997 Southeast Asia forest fires, International journal of Hygiene and Environmental Health, 2008: 75 – 85.

10.    Baldasano, J. M., Valera, E., Jiménez, P. (2003). Air quality data from large cities. The Science of The Total Environment, 307: 141 – 165.

11.    Azid, A., Juahir, H., Amran, M. A., Suhaili, Z., Osman, M. R., Muhamad, A., Abidin, I. Z., Sulaiman, N. H., Saudi, A. S. M. (2015).  Spatial air quality modelling using chemometrics techniques: a case study in Peninsular Malaysia.  Malaysian Journal of Analytical Sciences. 19(6): 1415 – 1430.

12.    Azid, A., Juahir, H., Ezani, E., Toriman, M. E., Endut, A., Rahman, M. N. A., Yunus, K., Kamarudin, M. K. A, Hasnam, C. N. C., Saudi, A. S. M. and Umar, R. (2015b). Identification source of variation on regional impact of air quality pattern using chemometric.  Aerosol and Air Quality Research, 15: 1545 –1558.

13.    Azid, A., Juahir, H., Toriman, M. E., Endut, A., Kamarudin, M. K. A., Rahman, M. N. A., Hasnam, C. N. C., Saudi, A. S. M., Yunus, K. (2015). Source apportionment of air pollution: A case study in Malaysia. Jurnal Teknologi, 72(1): 83 – 88.

14.    Amran, M. A., Azid, A., Juahir, H., Toriman, M. E., Mustafa, A. D., Hasnam, C. N. C., Azaman, F., Kamarudin, M. K. A., Saudi, A. S. M. and Yunus, K. (2015). Spatial analysis of the certain air pollutants using environmetric techniques. Jurnal Teknologi, 75(1): 241 – 249.

15.    Isiyaka, H. A., Juahir, H., Toriman, M. E., Azid, A., Gasim, B. M. and Kamarudin, M. K. A. (2015). Assessment of the spatial variation and source apportionment of air pollution based on chemometric techniques: A case study in the Peninsular Malaysia. Jurnal Teknologi, 77(1): 33 – 44.

16.    Isiyaka, H. A. and Azid, A. (2015). Air quality pattern assessment in Malaysia using multivariate techniques.  Malaysian Journal of Analytical Sciences, 19(5): 966 – 978.

17.    Azid, A., Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A.S.M., Hasnam, C. N. C., Aziz, N. A. A., Azaman, F., Latif, M. T., Zainuddin, S. F. M., Osman, M. R. and Yamin, M. (2014).  Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia.  Water Air Soil Pollution, 225(8): 1 – 14.

18.    Bereton, R. (2003). Chemometrics. Data analysis for the laboratory and chemical plant. Wiley, Chichester.

19.    Massart, D. L. and Kaufman, L. (1983). The interpretation of analytical chemical data by the use of cluster analysis, Wiley, New York.

20.    Singh, K. P., Malik, A., Mohan, D. and Sintha, S., (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Chomti River (India) – a case study. Water Research, 38(18): 3980 – 3992.

21.    Singh, K. P., Malik, A. and Sintha, S., (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques – A case study. Analytica Chimica Acta, 538 (1-2): 355 – 374.

22.    Kannel, P. R., Lee. S. R., Kanel, S. R. and Khan., S. P. (2007). Chemometrics application in classification and assessment of monitoring locations of an urban river system. Analytica Chimica Acta, 582: 390 – 399.

23.    McKenna Jr., J. E. (2003). An enhance cluster analysis program with bootstrap significance testing for ecological community analysis. Environmental Modelling and Software, 8(2): 205 – 220.

24.    Abas, M. R. and Simoneit, B. R. T. (1996). Composition extractable organic matter of air particle from Malaysia: initial study. Atmospheric Environment, 30(15): 2779 – 2793.

25.    Omar, N. Y. M. J., Abas, M. R. B., Ketuly, K. A. and Tahir, N. M.(2002). Concentration of PAHs in atmospheric particle (PM10) and road side soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36(2): 247 – 254.

26.    Department of Environment (2009), Environmental quality report, Department of Environment Malaysia. Malaysia. Kuala Lumpur.

27.    Tsikriktsis, N. (2005). A review of techniques for treating missing data in OM survey research. Journal of Operations Management, 24(1): 53 – 62.

28.    Chan, L. S. and Dunn, O. J. (1972). The treatment of missing values in discriminant analysis. I. The sampling experiment. Journal of the American Statistical Association, 67: 473 – 477.

29.    Chan, L. S., Gilman, J. A. and Dunn, O. J. (1976). Alternative approaches to missing values in discriminant analysis. Journal of the American Statistical Association, 71: 842 – 844.

30.    Raymond, M. R. and Roberts, D. M., (1987). A comparison of methods for treating incomplete data in selection research. Educational and Psychological Measurement, 47: 13 – 26.

31.    Saudi, A. S. M., Juahir, H., Azid, A., Toriman, M. E., Kamarudin, M. K. A., Saudi, M. M., Mustafa, A. D. and Amran, M. A. (2015). Flood risk pattern recognition by using environmetric technique: A case study in Langat river basin. Jurnal Teknologi, 77(1): 145–152.

32.    Saudi, A. S. M., Azid, A., Juahir, H., Toriman, M. E., Amran, M. A., Mustafa, A. D., Azaman, F., Kamarudin, M. K. A. and Saudi, M. M. (2015). Flood risk pattern recognition using integrated chemometric method and artificial neural network: A case study in the Johor river basin. Jurnal Teknologi, 74(1): 165 – 170.

33.    Saudi, A. S. M., Juahir, H., Azid, A., Kamarudin, M. K. A., Kasim, M. F., Toriman, M. E., Aziz, N. A. A., Hasnam, C. N. C. and Samsudin, M. S. (2015). Flood risk pattern recognition using chemometric technique: A case study in Kuantan river basin.  Jurnal Teknologi, 72(1): 137 – 141.

34.    Chua, Y. P. (2013), Spearman correlation test; Book 3, basic research statistic, analysis of likert scale data, Mc Graw-Hill Education (Ed. 2): pp. 242 – 262.

35.    Kamaruddin, A. F., Toriman, M. E., Juahir, H., Zain, S. M., Rahman, M. N. A., Kamarudin, M. K. A., and Azid, A. (2015).  Spatial characterization and identification sources of pollution using multivariate analysis at Terengganu river basin, Malaysia.  Jurnal Teknologi, 77(1): 269 – 273.

36.    Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A. Z., Zain, S. M. and Dominick, D. (2013). Spatial and temporal air quality pattern recognition using environmetric techniques: A case study in Malaysia. Environmental Science: Processes Impacts, 15: 1717 – 1728.

37.    Ul-Saufie, A. Z., Yahya, A. S., Ramli, N. A., Rosaida, N., and Hamid, H. A., (2013). Future daily PM10 concentration prediction by combining regression models and feedwork backpropagation models with principal component analysis (PCA). Atmospheric Environment, 77: 621 – 637.

38.    Chua, Y. P. (2009), Factor analysis and cluster analysis; Book 5, regression test, factor analysis and SEM analysis, Mc Graw-Hill Education: pp. 170 – 299

39.    Abdul-Wahab, S. A., Bakheit, C.S. and Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling Software, 20: 1263 – 1271.

40.    Markou, M. and Kassomenos, P. (2010). Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmospheric Research, 98: 438 – 457.

41.    Masiol, M., Rampazzo, G., Ceccato, D., Squizzato, s., and Pavoni, B. (2010). Characterization of PM10 sources in coastal area near Venice (Italy): An application of factor-cluster analysis. Chemosphere, 80: 771 – 778.

42.    Department of Environment (2011). Environmental Quality Report, Department of Environment Malaysia. Malaysia. Kuala Lumpur.

43.    Ghazali, N. A., Ramli, N. A. and Yahya, A. S. (2009). A study to investigate and model the transformation of nitrogen dioxide into ozone using time series plot. European Journal of Scientific Research 37(2): 192 – 205.

44.    Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psycometrika, 23: 187 – 200.

45.    Dominick, D., Juahir, H., Latif, M. T., M. Zain, S. and Aris, A. Z. (2012). Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, 60: 172 – 181.

 




Previous                    Content                    Next