Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1153 - 1158

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-22

 

 

 

PLASTICIZING POLY(LACTIC ACID) USING EPOXIDIZED PALM OIL FOR ENVIRONMENTAL FRIENDLY PACKAGING MATERIAL

 

(Pemplastikan Poli(laktik asid) Menggunakan Minyak Kelapa Sawit Terepoksi untuk Bahan Pembungkus Mesra Alam)

 

Fathilah Binti Ali1*, Raina Jama Awale1, Hanan Fakhruldin1, Hazleen Anuar2

 

1Department of Biotechnology Engineering, Kulliyyah of Engineering

2Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering

 International Islamic University of Malaysia, 53100 Kuala Lumpur, Malaysia

 

*Corresponding author: fathilah@iium.edu.my

 

 

Received: 10 June 2015; Accepted: 21 July 2016

 

 

Abstract

Petrochemical based polymers used in packaging materials are causing various environmental problems. Therefore, biopolymers prepared from renewable sources have high potential to substitute the commercially available non-degradable polymer. Poly(lactic acid) (PLA) is one of the biodegradable polymers that can be used to substitute in the application of petrochemical-based polymers. Environmental friendly and biodegradable epoxidized palm oil (EPO) was used as plasticizer in this study and it was incorporated into PLA matrix through solution blending method. The mechanical properties were determined through three-point flexural test and tensile test. Tensile results revealed that the flexibility of PLA can be improved by the addition of epoxidized palm oil (EPO) as plasticizer in the polymer. PLA/EPO blend at ratio 100:10 showed significant flexibility among the other PLA/EPO blends. The thermal properties of neat PLA and PLA/EPO blends were characterized by using Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) decreased by addition of plasticizer, indicated the chain mobility of PLA increased in the PLA/EPO blends system. The improved flexibility of PLA by using EPO as plasticizer showed that it has high potential to be used as environmental-friendly packaging material.

 

Keywords:  biodegradable polymer, green polymer, poly(lactic acid), environmental friendly packaging material

 

Abstrak

Barangan  dari  sumber  yang  boleh  diperbaharui  boleh  mewujudkan  satu  platform  untuk menggantikan  polimer  berasaskan  petroleum  yang  diketahui  tidak  mampu  terbiodegradasi. Poli(laktik asid) (PLA) adalah  antara  polimer yang  boleh  biodegradasi  secara  semula jadi  dan dipercayai  boleh  menjadi  pengganti  bagi  penggunaan  polimer petrokimia.  Pemplastik yang terbiodegradasi boleh digunakan untuk meningkatkan fleksibiliti PLA. PLA/EPO telah dicampurkan dengan nisbah tertentu dan sifat mekanikal dan haba  bahan  ini  telah  dikaji.  Sifat mekanik polimer/pemplastik ditentukan  melalui  ujian  lenturan  mekanik  dan  ujian  tegangan.  Hasil kajian tegangan bahan menunjukkan bahawa fleksibiliti PLA boleh dipertingkatkan dengan penambahan minyak kelapa sawat terepoksi (EPO) sebagai pemplastik dalam polimer. Ia telah membuktikan bahawa kandungan 100:10 PLA/EPO adalah nisbah yang paling sesuai untuk campuran PLA/EPO. Ciri – ciri haba diperolehi dengan menggunakan Kalorimeter Pengimbasan Perbezaan (DSC). Pemplastik didapati mengurangkan suhu peralihan kaca PLA. EPO didapati meningkatkan tekanan tegangan dan pemanjangan di dalam PLA/EPO. Peningkatan fleksibiliti PLA menerusi penggunaan EPO membuktikan bahawa PLA/EPO boleh digunakan untuk pengunaan bungkusan mesra alam.

 

Kata kunci:  polimer terbiodegradasikan, polimer hijau, poli(laktik asid), bungkusan mesra alam

 

References

1.       Erin, H. (2009). Flexible packaging: Innovations and developments. Italian Packaging Technology Award, (2): 16 – 17.

2.       Silverajah, V. G., Ibrahim, N. A., Wan Yunus, W., Abu Hassan, H. and Woei, C. B. (2012). A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized palm oil blend. International Journal of Molecular Sciences, 13(5): 5878 – 5898.

3.       Shirai, M., Grossmann, M., Mali, S., Yamashita, F., Garcia, P. and Müller, C. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1): 19 – 22.

4.       Avérous, L. and Pollet, E. (2012). Biodegradable polymers. Environmental silicate nano-biocomposites. London: Springer-Verlag: pp. 14 – 39.

5.       Anne, B. (2011). Environmental-friendly biodegradable polymers and composites. Integrated Waste Management, 1: pp. 25.

6.       Mitrus, M., Wojtowicz, A. and Moscicki, L. (2009). Biodegradable polymers and their practical utility. Thermoplastic starch. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA: pp. 1 – 33.

7.       Leja, K. and Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymers – A Review. Polish Journal of Environment Studies, 19(2): 255 – 266.

8.       Al-Mullah, E. A. and Ibrahim, N. A. (2012). Poly(lactic Acid) as a biopolymer-based nano-composite. Products and Applications of Biopolymers, 28: pp 23.

9.       Rasal, R. M., Janorkar, A. V. and Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3): 388 – 356.

10.    Ali, F., Chang, Y. W., Kang, S. C. and Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62 (1): 91 – 98.

11.    Chieng, B. W., Ibrahim, N. A., Then, Y. Y. and Loo, Y. Y. (2014). Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules, 19: 16024 – 16038.

 




Previous                    Content                    Next