Malaysian Journal of Analytical Sciences Vol 18
No 3 (2014): 544 - 554
DESIGN, DEVELOPMENT AND EVALUATION OF A SIMPLE SEMI-AUTOMATED SYSTEM FOR [18F]-FLUOROCHOLINE SYNTHESIS
(Reka bentuk, pembangunan dan penilaian sistem
pensintesis [18F]-Fluorocholine
separa automatik)
Faizal Mohamed1*, Mohd Fadli Mohammad Noh1,
Irman Abd. Rahman1, Nur Ratasha Alia Md. Rosli1, Cheong
Kai Heng1, Zulkifli Mohamed Hashim2, Mohamad Arif Hamzah3,
Fadil Ismail3
1School of Applied Physics, Faculty of Science and
Technology
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
2Nuclear Medicine
Division,
3Prototype and Plant
Development Centre,
Malaysian Nuclear Agency,
Bangi, 43000 Kajang, Selangor, Malaysia
*Corresponding author: faizalm@ukm.edu.my
Abstract
Positron
Emission Tomography (PET) scanning are usually conducted with [18F]-fluoro-2-deoxyglucose
(FDG) as tracer. The [18F]FDG exhibits several weakness in detecting
certain type of tumours such as brain tumour and prostate metastasis. In this
study, [18F]-fluorocholine (FCH) has been identified as an
alternative to [18F]FDG. The absence of specific synthesizer for FCH
production hampers the application of this tracer in PET studies at local
premises. This study focuses on the development of the [18F]FCH synthesizer
prototype and the [18F]FCH synthesis. The design would emphasize on
its simplicity, relatively low cost, semi-automated synthesis and purification,
as well as good reliability and safety. The [18F]FCH was synthesized
in two steps approach; reacting [18F]-fluoride with dibromomethane
into [18F]-fluorobromethane before purification using Sep-Pak silica
cartridges and finally converted into [18F]FCH by reacting with
N,N-dimethylaminoethanol. The synthesizer are successfully developed and able
to achieve decay-corrected radiochemical yield of 10.131 % in under 110
minutes. Optimization of the radiochemical yield is still underway.
Keywords: [18F]-fluorocholine,
remotely operated synthesizer, positron emission tomography,
radiopharmaceutical
Abstrak
[18F]-fluoro-2-deoxyglucose
(FDG) secara amnya digunakan sebagai penyurih dalam imbasan menggunakan
tomografi pancaran positron (PET). Penyurih ini mempunyai beberapa kelemahan
dalam mengesan jenis kanser seperti tumor otak dan tumor prostat. Disebabkan oleh faktor ini, [18F]-fluorokolina
(FCH) telah dikenal pasti sebagai penyurih alternatif. Namun disebabkan tiada
pensintesis FCH yang khusus, ia tidak dapat diaplikasikan sebagai penyurih PET
di hospital tempatan. Kajian ini dijalankan bertujuan untuk menghasilkan
prototaip pensintesis [18F] FCH dan mensintesis [18F]
FCH. Reka bentuk prototaip ini tertumpu pada keringkasan, kos yang rendah,
sintesis dan penulenan secara separa automatik, serta faktor keselamatan.[18F]FCH
telah di sintesis menerusi dua peringkat; [18F]-fluorida di
tindakbalas dengan dibromomethana menghasilkan [18F]-fluorobromethana
sebelum penulenan menggunakan kartrij silica Sep-Pak. Kemudiannya [18F]-fluorobromethana
di tindakbalas dengan N,N-dimethylaminoethanol menghasilkan [18F]FCH.
Pensintesis [18F]FCH telah berjaya dihasilkan dan [18F]FCH
dapat dihasilkan pada kadar 10.131 % dalam 110 minit. Penghasilan FCH secara
optima masih dalam kajian.
Kata kunci: [18F]-fluorokolina,
pensintesis kawalan jauh, tomografi pancaran positron, radiofarmaseutikal
References
1.
Lim,
C.C., Yahaya, H. and Lim. (2003). First Report of the National Cancer Registry:
Cancer Incidence in Malaysia 2002. Kuala Lumpur: National Cancer Registry.
2.
Lim,
C.C. and Yahaya, H. (2004). Second
Report of the National Cancer Registry: Cancer Incidence in Malaysia 2003.
Kuala Lumpur: National Cancer Registry.
3.
Fass, L. (2008).
Imaging and cancer: A review. Journal of
Molecular Oncology 2: 115-152.
4.
Bombadieri, E.,
Alessi, A., Villano, C., Gerali, A., and Crippa, F. (2008). The relevance of
PET in diagnosis oncology. In Biersack, Hans-Jurgen and Freeman, L.M. (editor).
Clinical Nuclear Medicine, pg.
360-391. Berlin: Springer.
5.
Pantaleo, M.A.,
Nannini, M., Maleddu, A., Fanti, S., Ambrosini, V., Nanni, C., Boschi, S., and
Biasco, G. (2008). Conventional and novel PET tracers for imaging in oncology
in the era of molecular therapy. Cancer
Treatment Reviews 34: 103-121.
6.
Hara, T. (2001).
18F-Fluorocholine: A new oncologic PET tracer. Journal of Nuclear Medicine 42(12): 1815-17.
7.
Price, D.T.,
Coleman, R.E., Liao, R.P., Robertson, C.N., Polascik, T.J., and DeGrado, T.R. (2002).
Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose
for positron emission tomography of androgen dependent and androgen independent
prostate cancer. Journal of Urology
168: 273-280.
8.
Picchio,
M.,Messa, C., Gianolli, L., Sironi, S., Brioschi, M., Matarrese, M., Matei, V.,
De Cobelli, F., Del Mashio, A., Rocco, F., Rigatti, P., and Fazio, F. (2003).
Value of [11C]choline-positron emission tomography for re-staging prostate
cancer: A comparison with [18F]fluorodeoxyglucose-positron smission
tomography. Journal of Urology 169:
1337-40
9.
Reske, S.V.,
Blumstein, N.M., Neumaier, B., Gottfried, H.W., Finsterbusch, F., Kocot, D.,
Moller, P., Glatting, G., and Perner, S. (2006). Imaging prostate cancer with
11C-choline PET/CT. Journal of Nuclear
Medicine 47(8): 1249-54.
10.
Pieterman, R.M.,
Tjin, H.Q., Elsinga, P.H., Pruim, J. van Putten J.W.G., Willemsen, A.T.M.,
Vaalburg, W., and Groen, H.J.M. (2002). Comparison of 11C-choline and
18F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. Journal of Nuclear Medicine 43: 167-172.
11.
DeGrado, T.R.,
Baldwin, S.W., Wang, S., Orr, M.D., Liao, R.P., Friedman, H.S., Reiman, R., and
Price, D.T. (2000). Synthesis and evaluation of 18F-labeled choline
as an oncologic tracer for positron emission tomography: Initial findings in
prostate cancer. Journal of Cancer
Research 61: 110-117.
12.
DeGrado, T.R.,
Baldwin, S.W., Wang, S., Orr, M.D., Liao, R.P., Friedman, H.S., Reiman, R., Price,
D.T., and Coleman, R.E. (2001). Synthesis and evaluation of 18F-labeled
choline as an oncologic PET tracers. Journal
of Nuclear Medicine 42: 1805-14.
13.
Iwata, R.,
Pascali, C., Bogni, A., Furumoto, S., Terasaki, K., and Yana, K. (2002).
[18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating
agent; preparation and application to the on-column preparation of [18F]fluorocholine.
Applied Radiation and Isotopes 57:
347-352.
14.
Hara, T.,
Noboru, K. and Hiroichi, K. (2002). development of 18F-fluoroethylcholine
for cancer imaging with PET: Synthesis, biochemistry, and prostate cancer
imaging. Journal of Nuclear Medicine
43: 187-199.
15.
Bauman, A.,
Piel, M., Schirmacher, R., and Rosch, F. (2003). Efficient alkali iodide
promoted fluoroehtylations with 2-[18F]fluoroethyl tosylate and
1-bromo-2-[18F]fluoroethane. Tetrahedron
Letters 44: 9165-67.
16.
Piel, M.,
Bauman, A., Baum, R.P., Hohnemann, S., Klette, I., Wortman, R. and Rosch, F. (2007).
Improved automated synthesis of [18F]fluoroethylcholine as a radiotracer for
cancer imaging. Bioorganic and Medicinal
Chemistry 15: 3171-75.
17.
Kryza, D.,
Tadino, V., Filannino, M.A., Villeret, G., and Lemoucheux, L. (2008). Fully
automated [18F]fluorocholine synthesis in the TracerLab MXFDG
Coincidence synthesizer. Nuclear Medicine
and Biology 35: 255-260.
18.
Zuhayra, M.,
Alfteimi, A., Papp, L., Lutzen, U., Lutzen, A., Von Forstner, C., Meller, B.
and Henze, E. (2008). Simplified fast and high yielding automated synthesis of
[18F]fluorethylcholine for prostate cancer imaging. Bioorg Med Chem. 16(20):9121-9126.
19.
Cheung,
M.K. and Ho, C.L. (2009). A simple, versatile, low-cost and remotely operated
apparatus for [11C]acetate, [11C]choline, [11C]methionine
and [11C]PIB synthesis. Applied
Radiation and Isotopes 67: 581–589.
20.
Ahmed,
N., Langlois, R., Rodrigue, S., Bernard, F., van Lier, J. E. (2007). Automated
synthesis of 11B-methoxy-4,16a-[16a-18F]difluoroestradiol (4F-M[18F]FES)
for estrogen receptor imaging by positron emission tomography. Nuclear Medicine and Biology 34:
459–464.