Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 660 - 668

 

 

 

EFFECTS OF USING DIFFERENT HEALING AGENTS ON HEALING EFFICIENCY IN SOLID STATE SELF-HEALING SYSTEM

 

(Kesan menggunakan Agen Pemulihan Berbeza ke atas Keberkesanan Pemulihan Sistem Swa-Pemulihan Keadaan Pepejal)

 

N. N Muhamad1*, S. M. Makenan1, M. J. Mohd Suzeren1, S. Abdullah2, M.A.S Mat Lazim1

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology

2Department of Mechanical & Materials, Faculty of Engineering and Architecture Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: msuzeren@gmail.com

 

 

Abstract

Self-healing polymers possess the ability to heal in response to damage using resources inherently available to the system. The solid-state self-healing system was obtained by blending thermoplastic polymers into epoxy resin matrix. This study aimed to investigate the effect of polymer healing efficiency by using different thermoplastic polymers as healing agents which were poly (bisphenol-A-co-epichlorohydrin) (PDGEBA), polypropylene (PP) and polyethylene (PE). The bonding formed in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Healing was achieved by heating the fractured specimen to a specific temperature, above their glass transition temperature (Tg) to mobilize the polymeric chains of the healing agent. The Tg for each specimen was obtained from dynamic mechanical analysis (DMA). From the Izod impact test it was found that healable resin with PDGEBA has the highest healing efficiency followed by PP and PE, with 63%, 31% and 24% of average percentage healing efficiencies, respectively. These results were due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. The morphological properties and the fracture-healing process of the resins were then observed using optical microscope.

 

Keywords: Solid state self-healing; different healing agent; healing efficiency; impact test

 

Abstrak

Swa-pemulihan polimer memiliki keupayaan untuk memulihkan kerosakan menggunakan sumber yang telah tersedia di dalam sistem tersebut. Sistem swa-pemulihan keadaan pepejal disediakan dengan mengadunkan polimer termoplastik ke dalam matriks resin epoksi. Dalam kajian ini, kesan keberkesanan pemulihan telah dikaji dengan menggunakan polimer termoplastik yang berbeza sebagai agen pemulihan iaitu poli(bisfenol-A-ko-epiklorohidrin) (PDGEBA), polipropilena (PP) dan polietilena (PE). Pencirian  ikatan yang terbentuk dalam resin epoksi telah dijalankan menggunakan spektroskopi inframerah (FTIR) Pemulihan telah dicapai dengan memanaskan spesimen yang patah menggunakan suhu spesifik, iaitu suhu di atas suhu peralihan kaca (Tg) matriks resin bagi membolehkan rantai polimer agen pemulihan bergerak. Suhu peralihan kaca bagi setiap spesimen telah diperolehi dari analisis mekanikal dinamik (DMA)  Hasil daripada ujian hentaman Izod, resin pemulihan dengan agen pemulihan PDGEBA menunjukkan keberkesanan pemulihan yang tertinggi diikuti dengan agen pemulihan PP dan PE, dengan masing-masing memiliki purata peratusan keberkesanan pemulihan 63%, 31% dan 24%. Hasil ini adalah disebabkan oleh perbezaan parameter kelarutan polimer termoset dan termoplastik yang membawa kepada pemisahan fasa. Pencirian morfologi dan proses patah-pemulihan kemudiannnya dikaji menggunakan mikroskop optik.

 

Kata kunci: Swa-pemulihan keadaan pepejal; agen pemulihan berbeza; keberkesanan pemulihan; ujian impak

 

References

1.       Wu, D. Y., Meure, S., & Solomon, D. (2008). Self-healing polymeric materials: A review of recent developments. Progress in Polymer Science, 33 (5): 479-522.

2.       Jud, K., Kausch, H. H., & Williams, J. G. (1981). Fracture mechanics studies of crack healing and welding of polymers. Journal of Materials Science, 16 (1): 204-210.

3.       Trask, R. S., Williams, H. R., & Bond, I. P. (2007). Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2 (1): 1-12.

4.       Dry, C. (1994). Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, 3 (2): 118.

5.       White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409 (6822): 794-797.

6.       Kalista, S. J. & Ward, T. C. (2007). Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. Journal of The Royal Society Interface, 4 (13): 405-411.

7.       Murphy, E. B. & Wudl, F. (2010). The world of smart healable materials. Progress in Polymer Science, 35 (1–2): 223-251.

8.       Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White, S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40: 179 - 211.

9.       Hayes, S. A., Jones, F. R., Marshiya, K., & Zhang, W. (2007 a). A self-healing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38 (4): 1116-1120.

10.    Kim, Y. H. & Wool, R. P. (1983). A theory of healing at a polymer-polymer interface. Macromolecules, 16 (7): 1115-1120.

11.    De Gennes, P. G., Scaling concepts in polymer physics. 1979: Cornell university press.

12.    Hayes, S. A., Zhang, W., Branthwaite, M., & Jones, F. R. (2007 b). Self-healing of damage in fibre-reinforced polymer-matrix composites. Journal of The Royal Society Interface, 4 (13): 381-387.

13.    González, M. G., Cabanelas, J. C., & Baselga, J. (2012). Applications of FTIR on Epoxy Resins–Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. Infrared Spectroscopy–Materials Science, Engineering and Technology.

14.    Hoy, K. (1970). New values of the solubility parameters from vapor pressure data. Journal of Paint Technology, 42 (541): 76-118.

15.    Hutchinson, J. M. (1995). Physical aging of polymers. Progress in Polymer Science, 20 (4): 703-760.

16.    Kong, E. S.-W.(1986) Physical aging in epoxy matrices and composites, in Epoxy Resins and Composites IV Springer:125-171.

17.    Peterson, A. M., Kotthapalli, H., Rahmathullah, M. A. M., & Palmese, G. R. (2012). Investigation of interpenetrating polymer networks for self-healing applications. Composites Science and Technology, 72 (2): 330-336.

 

 

 

Previous                    Content                    Next