Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 660 - 668
EFFECTS OF USING DIFFERENT HEALING AGENTS ON HEALING
EFFICIENCY IN SOLID STATE SELF-HEALING SYSTEM
(Kesan
menggunakan Agen Pemulihan Berbeza ke atas Keberkesanan Pemulihan Sistem
Swa-Pemulihan Keadaan Pepejal)
N. N Muhamad1*,
S. M. Makenan1, M. J. Mohd Suzeren1, S. Abdullah2,
M.A.S Mat Lazim1
1School of Chemical Science and Food Technology,
Faculty of Science and Technology
2Department of Mechanical & Materials, Faculty
of Engineering and Architecture Engineering
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: msuzeren@gmail.com
Abstract
Self-healing
polymers possess the ability to heal in response to damage using resources
inherently available to the system. The solid-state self-healing system was
obtained by blending thermoplastic polymers into epoxy resin matrix. This study
aimed to investigate the effect of polymer healing efficiency by using
different thermoplastic polymers as healing agents which
were poly (bisphenol-A-co-epichlorohydrin) (PDGEBA), polypropylene (PP) and
polyethylene (PE). The bonding formed in the epoxy resins were characterized by
means of Fourier transform infrared spectroscopy (FTIR). Healing was achieved
by heating the fractured specimen to a specific temperature, above their glass
transition temperature (Tg) to mobilize the polymeric chains of the healing
agent. The Tg for each specimen was obtained from dynamic mechanical analysis
(DMA). From the Izod impact test it was found that
healable resin with PDGEBA has the highest healing efficiency followed
by PP and PE, with 63%, 31% and 24% of average percentage healing efficiencies,
respectively. These results were due to the different solubility parameters of
the thermoset/network and thermoplastic polymer which led to the phase
separation. The morphological properties and the fracture-healing process of
the resins were then observed using optical microscope.
Keywords: Solid state
self-healing; different healing agent; healing efficiency; impact test
Abstrak
Swa-pemulihan
polimer memiliki keupayaan untuk memulihkan kerosakan menggunakan sumber yang
telah tersedia di dalam sistem tersebut. Sistem swa-pemulihan keadaan pepejal
disediakan dengan mengadunkan polimer termoplastik ke dalam matriks resin epoksi.
Dalam kajian ini, kesan keberkesanan pemulihan telah dikaji dengan menggunakan
polimer termoplastik yang berbeza sebagai agen pemulihan iaitu
poli(bisfenol-A-ko-epiklorohidrin) (PDGEBA), polipropilena (PP) dan polietilena
(PE). Pencirian ikatan yang terbentuk
dalam resin epoksi telah dijalankan menggunakan spektroskopi inframerah (FTIR) Pemulihan
telah dicapai dengan memanaskan spesimen yang patah menggunakan suhu spesifik,
iaitu suhu di atas suhu peralihan kaca (Tg) matriks resin bagi membolehkan
rantai polimer agen pemulihan bergerak. Suhu peralihan kaca bagi setiap
spesimen telah diperolehi dari analisis mekanikal dinamik (DMA) Hasil daripada ujian hentaman Izod, resin
pemulihan dengan agen pemulihan PDGEBA menunjukkan keberkesanan pemulihan yang
tertinggi diikuti dengan agen pemulihan PP dan PE, dengan masing-masing
memiliki purata peratusan keberkesanan pemulihan 63%, 31% dan 24%. Hasil ini
adalah disebabkan oleh perbezaan parameter kelarutan polimer termoset dan termoplastik
yang membawa kepada pemisahan fasa. Pencirian morfologi dan proses
patah-pemulihan kemudiannnya dikaji menggunakan mikroskop optik.
Kata kunci: Swa-pemulihan
keadaan pepejal; agen pemulihan berbeza; keberkesanan pemulihan; ujian impak
References
1.
Wu, D. Y.,
Meure, S., & Solomon, D. (2008). Self-healing polymeric materials: A review
of recent developments. Progress in
Polymer Science, 33 (5): 479-522.
2.
Jud, K., Kausch,
H. H., & Williams, J. G. (1981). Fracture mechanics studies of crack
healing and welding of polymers. Journal
of Materials Science, 16 (1): 204-210.
3.
Trask, R. S.,
Williams, H. R., & Bond, I. P. (2007). Self-healing polymer composites:
mimicking nature to enhance performance. Bioinspiration
& Biomimetics, 2 (1): 1-12.
4.
Dry, C. (1994).
Matrix cracking repair and filling using active and passive modes for smart
timed release of chemicals from fibers into cement matrices. Smart Materials and Structures, 3 (2):
118.
5.
White, S. R.,
Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R.,
Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer
composites. Nature, 409 (6822):
794-797.
6.
Kalista, S. J.
& Ward, T. C. (2007). Thermal characteristics of the self-healing response
in poly(ethylene-co-methacrylic acid) copolymers. Journal of The Royal Society Interface, 4 (13): 405-411.
7.
Murphy, E. B.
& Wudl, F. (2010). The world of smart healable materials. Progress in Polymer Science, 35 (1–2):
223-251.
8.
Blaiszik, B. J.,
Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White,
S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40: 179 - 211.
9.
Hayes, S. A.,
Jones, F. R., Marshiya, K., & Zhang, W. (2007 a). A self-healing
thermosetting composite material. Composites
Part A: Applied Science and Manufacturing, 38 (4): 1116-1120.
10.
Kim, Y. H. &
Wool, R. P. (1983). A theory of healing at a polymer-polymer interface. Macromolecules, 16 (7): 1115-1120.
11.
De Gennes, P.
G., Scaling concepts in polymer physics.
1979: Cornell university press.
12.
Hayes, S. A.,
Zhang, W., Branthwaite, M., & Jones, F. R. (2007 b). Self-healing of damage
in fibre-reinforced polymer-matrix composites. Journal of The Royal Society Interface, 4 (13): 381-387.
13.
González, M. G.,
Cabanelas, J. C., & Baselga, J. (2012). Applications of FTIR on Epoxy
Resins–Identification, Monitoring the Curing Process, Phase Separation and
Water Uptake. Infrared
Spectroscopy–Materials Science, Engineering and Technology.
14.
Hoy, K. (1970).
New values of the solubility parameters from vapor pressure data. Journal of Paint Technology, 42 (541):
76-118.
15.
Hutchinson, J.
M. (1995). Physical aging of polymers. Progress
in Polymer Science, 20 (4): 703-760.
16.
Kong, E.
S.-W.(1986) Physical aging in epoxy
matrices and composites, in Epoxy
Resins and Composites IV Springer:125-171.
17.
Peterson, A. M.,
Kotthapalli, H., Rahmathullah, M. A. M., & Palmese, G. R. (2012).
Investigation of interpenetrating polymer networks for self-healing
applications. Composites Science and
Technology, 72 (2): 330-336.