Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 642 - 650
CHARACTERIZATION OF POLYLACTIC ACID/MICROCRYSTALLINE
CELLULOSE/MONTMORILLONITE HYBRID COMPOSITES
(Pencirian Komposit Polilaktik asid/Selulosa Mikrohablur/
Hibrid Montmorilonit)
Reza Arjmandi1,
Azman Hassan1*, M.K. Mohamad Haafiz1, 2, Zainoha Zakaria3,
I. M. Inuwa1
1Department of Polymer Engineering,
Faculty of Chemical Engineering,
Universiti
Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
2School
of Industrial Technology,
Universiti Sains Malaysia, 11800 Penang,
Malaysia
3Faculty
of Science,
Universiti Teknologi Malaysia, 81310
UTM Skudai, Johor, Malaysia
*Corresponding author: azmanh@cheme.utm.my
Abstract
The
objective of this study is to investigate the effect of montmorillonite
(MMT)/microcrystalline cellulose (MCC) hybrid fillers on mechanical properties
and morphological characteristics of polylactic acid (PLA) composites. PLA/MMT
nanocomposites and PLA/MMT/MCC hybrid composites were prepared by solution
casting method. Morphology and tensile properties of PLA composites were
investigated using Field emission scanning electron microscopy and Instron
tensile testing machine. The maximum tensile strength of PLA/MMT
nanocomposites was obtained with 5 phr contents of MMT, which corresponding to
30.75 MPa. Based on optimized formulation of PLA/MMT nanocomposites (5 phr MMT
contents), various amounts of MCC (0 to 7 phr) were added into optimum
formulation of PLA/MMT in order to produce PLA/MMT/MCC hybrid composites. Fourier
transform infrared spectroscopy revealed some level of interaction between PLA
and both MMT and MCC in the hybrid composites. However, the percent elongation
at break of the hybrid composites was generally higher than PLA/MMT
nanocomposites. Additionally, Young’s modulus of the PLA/MMT/MCC hybrid
composites increased gradually with increasing of MCC contents and was higher
than PLA/MMT at all compositions. The present results are the first among a
series of experiments that have been designed in order to probe the effect of
MMT and MCC in the PLA.
Keywords: Hybrid composites, microcrystalline cellulose, polylactic acid,
montmorillonite, solution casting
Abstrak
Objektif
kajian ini adalah untuk mengkaji kesan pengisi hibrid montmorilonit
(MMT)/selulosa mikrohablur (MCC) ke atas sifat mekanikal dan ciri-ciri
morfologi komposit polilaktik asid (PLA). Nanokomposit PLA/MMT dan komposit
hibrid PLA/MMT/MCC telah di sediakan menggunakan kaedah larutan beracun.
Morfologi dan sifat regangan komposit PLA telah dikaji menggunakan mikroskop
pengimbas electron kawasan terpancar (FESEM) dan mesin ujian regangan Instron.
Kekuatan regangan maksimum nanokomposit PLA/MMT telah diperolehi dengan 5 bsg
kandungan MMT, yang bersamaan dengan 30.75 MPa. Berdasarkan formulasi optimum
nanokomposit PLA/MMT (5 bsg kandungan MMT), pelbagai jumlah MCC (0-7 bsg) telah
ditambah ke dalam formulasi optimum PLA/MMT untuk menghasilkan komposit hibrid
PLA/MMT/MCC. Spektroskopi inframerah transformasi fourier (FTIR) mendedahkan
beberapa tahap interaksi di antara PLA dan kedua-dua MMT dan MCC dalam komposit
hibrid. Walaubagaimanapun, peratusan terikan pada takat putus bagi komposit
hibrid adalah lebih tinggi daripada nanokomposit PLA/MMT. Selain itu, modulus
Young bagi komposit hibrid PLA/MMT/MCC meningkat secara beransur-ansur dengan
peningkatan kandungan MCC dan ia adalah lebih tinggi daripada PLA/MMT pada
semua komposisi. Keputusan ini adalah yang pertama dalam kalangan satu siri
eksperimen yang telah direka untuk mengkaji kesan MMT dan MCC di dalam PLA.
Kata kunci: komposit hibrid, selulosa mikrohablur, polilaktik asid, montmorilonit,
larutan beracun
References
1.
Oksman,
K., Skrifvars, M. & Selin, J. F. (2003). Natural fibres as reinforcement in
polylactic acid (PLA) composites. Composites science and technology. Composites Science and Technology,
63(9): 1317–1324.
2.
He, Y. N., Guo, K., Chen, J. Z., Niu, M. J., Wang, W. J. & Li, X. F.
(2011). Preparation and Characterization of Poly(lactic acid)/Montmorillonite
Nanocomposites via a Masterbatching Method. Advanced Materials Research, 335-336: 1493-1498.
3.
Sinha Ray, S. & Okamoto, M. (2003). Polymer/layered
silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science,
28(11): 1539–1641.
4.
Giannelis, E. P., Krishnamoorti, R. &
Manias, E. (1999). Polymer-silicate
nanocomposites: model systems for confined polymers and polymer brushes. Polymers
in confined environments, 138: 107–147.
5.
Zeng, Q. H., Yu, A. B., Lu, G. Q. M. &
Paul, D. R. (2005). Clay-based
polymer nanocomposites: research and commercial development. Journal of Nanoscience and
Nanotechnology, 5(10): 1574–1592.
6.
Jiang, L., Zhang, J. & Wolcott, M. P. (2007). Jiang, L.,
Zhang, J., & Wolcott, M. P. (2007). Comparison of polylactide/nano-sized
calcium carbonate and polylactide/montmorillonite composites: reinforcing
effects and toughening mechanisms. Polymer, 48(26): 7632–7644.
7.
Petinakis,
E., Yu, L., Edward, G., Dean, K., Liu, H. & Scully, A. (2009). Effect of
matrix–particle interfacial adhesion on the mechanical properties of poly
(lactic acid)/wood-flour micro-composites. Journal of Polymers and the
Environment, 17(2): 83-94.
8.
Chen, W., Yu, H., Liu, Y., Chen, P., Zhang,
M. & Hai, Y. (2011). Individualization
of cellulose nanofibers from wood using high-intensity ultrasonication combined
with chemical pretreatments. Carbohydrate Polymers, 83(4): 1804–1811.
9.
Iwatake, A., Nogi, M. & Yano, H.
(2008). Cellulose
nanofiber-reinforced polylactic acid. Composites Science and Technology,
68(9): 2103–2106.
10.
Lu, J., Askeland, P. & Drzal, L. T.
(2008). Surface
modification of microfibrillated cellulose for epoxy composite applications. Polymer, 49(5):
1285–1296.
11.
Lu, J., Wang, T. & Drzal, L. T. (2008).
Preparation
and properties of microfibrillated cellulose polyvinyl alcohol composite materials.
Composites Part A: Applied Science and Manufacturing, 39(5): 738–746.
12.
Mathew, A. P., Oksman, K. & Sain,
M. (2005). Mechanical
properties of biodegradable composites from poly lactic acid (PLA) and
microcrystalline cellulose (MCC). Journal of
Applied Polymer Science, 97(5): 2014–2025.
13.
Haafiz,
M. M. K., Azman Hassan, Zainoha Z., Inuwaa, I. M., Islam, M.
S. & Jawaid,
M. (2013). Properties of polylactic acid composites reinforced with oil palm
biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1):
139-145.
14.
Sanchez-Garcia,
M. D. & Lagaron, J. M. (2010). On the use of plant cellulose nanowhiskers
to enhance the barrier properties of polylactic acid. Cellulose, 17(5):
987-1004.
15.
Kemala,
T., Budianto, E. & Soegiyono, B. (2012). Preparation and characterization
of microspheres based on blend of poly (lactic acid) and poly
(ε-caprolactone) with poly (vinyl alcohol) as emulsifier. Arabian Journal of Chemistry, 5(1):
103-108.
16.
Pamula,
E., Blazeeicz, M., Paluszkiewiez, C. & Dobrzyǹ, ski. (2001). FTIR
study of degradation products of aliphatic polyesters–carbon fibres composites.
Journal of Molecular Structure,
596(1): 69-75.
17.
Qu,
P., Goa, Y., Wu, G. F. & Zhang, L. P. (2010). Nanocomposites of poly
(lactic acid) reinforced with cellulose nanofibrils. BioResources, 5(3): 1811-1823.
18.
Donald,
G. (2001). A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2): 63-84.
19.
Chen,
N. L., Feng, H. X., Guo, J. W., Luo, H. M. & Qiu, J. H. (2011).
Biodegradable Poly (lactic Acid)/TDI-Montmorillonite Nanocomposites:
Preparation and Characterization. Advanced
Materials Research, 221: 211-215.
20.
Yew,
G. H., Mohd Yusof, A. M., Mohd Ishak, Z. A. & Ishiaku, U. S. (2005). Water
absorption and enzymatic degradation of poly (lactic acid)/rice starch composites.
Polymer Degradation and Stability, 90(3):
488-500.
21.
Lee, J., Sun, Q. & Deng, Y. (2008). Nanocomposites
from regenerated cellulose and nanoclay. Journal of Biobased Materials and Bioenergy,
2(2): 162–168.
22.
Wilkinson,
A. N., Man, Z., Stanford, J. L., Matikainen, P., Clemens, M. L., Lees, G. C.
& Liauw, C. M. (2007). Tensile
properties of melt intercalated polyamide 6–Montmorillonite nanocomposites. Composites Science and
Technology, 67(15): 3360–3368.
23.
Yang, K. K., Wang, X. L. & Wang, Y. Z.
(2007). Progress
in nanocomposite of biodegradable polymer. Journal of Industrial and Engineering
Chemistry, 13(4): 485–500.
24.
Cheng,
Q., Wang, S. & Rials, T. G. (2009). Poly (vinyl alcohol) nanocomposites
reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites
Part A: Applied Science and Manufacturing, 40(2): 218-224.