Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 642 - 650

 

 

 

CHARACTERIZATION OF POLYLACTIC ACID/MICROCRYSTALLINE CELLULOSE/MONTMORILLONITE HYBRID COMPOSITES

 

(Pencirian Komposit Polilaktik asid/Selulosa Mikrohablur/ Hibrid Montmorilonit)

 

Reza Arjmandi1, Azman Hassan1*, M.K. Mohamad Haafiz1, 2, Zainoha Zakaria3, I. M. Inuwa1

 

1Department of Polymer Engineering, Faculty of Chemical Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

2School of Industrial Technology,

Universiti Sains Malaysia, 11800 Penang, Malaysia

3Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM  Skudai, Johor, Malaysia

 

*Corresponding author: azmanh@cheme.utm.my

 

 

Abstract

The objective of this study is to investigate the effect of montmorillonite (MMT)/microcrystalline cellulose (MCC) hybrid fillers on mechanical properties and morphological characteristics of polylactic acid (PLA) composites. PLA/MMT nanocomposites and PLA/MMT/MCC hybrid composites were prepared by solution casting method. Morphology and tensile properties of PLA composites were investigated using Field emission scanning electron microscopy and Instron tensile testing machine. The maximum tensile strength of PLA/MMT nanocomposites was obtained with 5 phr contents of MMT, which corresponding to 30.75 MPa. Based on optimized formulation of PLA/MMT nanocomposites (5 phr MMT contents), various amounts of MCC (0 to 7 phr) were added into optimum formulation of PLA/MMT in order to produce PLA/MMT/MCC hybrid composites. Fourier transform infrared spectroscopy revealed some level of interaction between PLA and both MMT and MCC in the hybrid composites. However, the percent elongation at break of the hybrid composites was generally higher than PLA/MMT nanocomposites. Additionally, Young’s modulus of the PLA/MMT/MCC hybrid composites increased gradually with increasing of MCC contents and was higher than PLA/MMT at all compositions. The present results are the first among a series of experiments that have been designed in order to probe the effect of MMT and MCC in the PLA.

 

Keywords: Hybrid composites, microcrystalline cellulose, polylactic acid, montmorillonite, solution casting

 

Abstrak

Objektif kajian ini adalah untuk mengkaji kesan pengisi hibrid montmorilonit (MMT)/selulosa mikrohablur (MCC) ke atas sifat mekanikal dan ciri-ciri morfologi komposit polilaktik asid (PLA). Nanokomposit PLA/MMT dan komposit hibrid PLA/MMT/MCC telah di sediakan menggunakan kaedah larutan beracun. Morfologi dan sifat regangan komposit PLA telah dikaji menggunakan mikroskop pengimbas electron kawasan terpancar (FESEM) dan mesin ujian regangan Instron. Kekuatan regangan maksimum nanokomposit PLA/MMT telah diperolehi dengan 5 bsg kandungan MMT, yang bersamaan dengan 30.75 MPa. Berdasarkan formulasi optimum nanokomposit PLA/MMT (5 bsg kandungan MMT), pelbagai jumlah MCC (0-7 bsg) telah ditambah ke dalam formulasi optimum PLA/MMT untuk menghasilkan komposit hibrid PLA/MMT/MCC. Spektroskopi inframerah transformasi fourier (FTIR) mendedahkan beberapa tahap interaksi di antara PLA dan kedua-dua MMT dan MCC dalam komposit hibrid. Walaubagaimanapun, peratusan terikan pada takat putus bagi komposit hibrid adalah lebih tinggi daripada nanokomposit PLA/MMT. Selain itu, modulus Young bagi komposit hibrid PLA/MMT/MCC meningkat secara beransur-ansur dengan peningkatan kandungan MCC dan ia adalah lebih tinggi daripada PLA/MMT pada semua komposisi. Keputusan ini adalah yang pertama dalam kalangan satu siri eksperimen yang telah direka untuk mengkaji kesan MMT dan MCC di dalam PLA.

 

Kata kunci: komposit hibrid, selulosa mikrohablur, polilaktik asid, montmorilonit, larutan beracun

 

References

1.       Oksman, K., Skrifvars, M. & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites science and technology. Composites Science and Technology, 63(9): 1317–1324.

2.       He, Y. N., Guo, K., Chen, J. Z., Niu, M. J., Wang, W. J. & Li, X. F. (2011). Preparation and Characterization of Poly(lactic acid)/Montmorillonite Nanocomposites via a Masterbatching Method. Advanced Materials Research, 335-336: 1493-1498.

3.       Sinha Ray, S. & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11): 1539–1641.

4.       Giannelis, E. P., Krishnamoorti, R. & Manias, E. (1999). Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Polymers in confined environments, 138: 107–147.

5.       Zeng, Q. H., Yu, A. B., Lu, G. Q. M. & Paul, D. R. (2005). Clay-based polymer nanocomposites: research and commercial development. Journal of Nanoscience and Nanotechnology, 5(10): 1574–1592.

6.       Jiang, L., Zhang, J. & Wolcott, M. P. (2007). Jiang, L., Zhang, J., & Wolcott, M. P. (2007). Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer, 48(26): 7632–7644.

7.       Petinakis, E., Yu, L., Edward, G., Dean, K., Liu, H. & Scully, A. (2009). Effect of matrix–particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood-flour micro-composites. Journal of Polymers and the Environment, 17(2): 83-94.

8.       Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4): 1804–1811.

9.       Iwatake, A., Nogi, M. & Yano, H. (2008). Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology, 68(9): 2103–2106.

10.    Lu, J., Askeland, P. & Drzal, L. T. (2008). Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer, 49(5): 1285–1296.

11.    Lu, J., Wang, T. & Drzal, L. T. (2008). Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites Part A: Applied Science and Manufacturing, 39(5): 738–746.

12.    Mathew, A. P., Oksman, K. & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5): 2014–2025.

13.    Haafiz, M. M. K., Azman Hassan, Zainoha Z., Inuwaa, I. M., Islam, M. S. & Jawaid, M. (2013). Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers, 98(1): 139-145.

14.    Sanchez-Garcia, M. D. & Lagaron, J. M. (2010). On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose, 17(5): 987-1004.

15.    Kemala, T., Budianto, E. & Soegiyono, B. (2012). Preparation and characterization of microspheres based on blend of poly (lactic acid) and poly (ε-caprolactone) with poly (vinyl alcohol) as emulsifier. Arabian Journal of Chemistry, 5(1): 103-108.

16.    Pamula, E., Blazeeicz, M., Paluszkiewiez, C. & Dobrzyǹ, ski. (2001). FTIR study of degradation products of aliphatic polyesters–carbon fibres composites. Journal of Molecular Structure, 596(1): 69-75.

17.    Qu, P., Goa, Y., Wu, G. F. & Zhang, L. P. (2010). Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources, 5(3): 1811-1823.

18.    Donald, G. (2001). A literature review of poly (lactic acid). Journal of Polymers and the Environment, 9(2): 63-84.

19.    Chen, N. L., Feng, H. X., Guo, J. W., Luo, H. M. & Qiu, J. H. (2011). Biodegradable Poly (lactic Acid)/TDI-Montmorillonite Nanocomposites: Preparation and Characterization. Advanced Materials Research, 221: 211-215.

20.    Yew, G. H., Mohd Yusof, A. M., Mohd Ishak, Z. A. & Ishiaku, U. S. (2005). Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polymer Degradation and Stability, 90(3): 488-500.

21.    Lee, J., Sun, Q. & Deng, Y. (2008). Nanocomposites from regenerated cellulose and nanoclay. Journal of Biobased Materials and Bioenergy, 2(2): 162–168.

22.    Wilkinson, A. N., Man, Z., Stanford, J. L., Matikainen, P., Clemens, M. L., Lees, G. C. & Liauw, C. M. (2007). Tensile properties of melt intercalated polyamide 6–Montmorillonite nanocomposites. Composites Science and Technology, 67(15): 3360–3368.

23.    Yang, K. K., Wang, X. L. & Wang, Y. Z. (2007). Progress in nanocomposite of biodegradable polymer. Journal of Industrial and Engineering Chemistry, 13(4): 485–500.

24.    Cheng, Q., Wang, S. & Rials, T. G. (2009). Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Composites Part A: Applied Science and Manufacturing, 40(2): 218-224.

 

Previous                    Content                    Next