Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 423 – 433
role of anti-oxidants on normoxic METHACRYLIC ACID
GELATIN (MAG) polymer gel dosimeter at 6-MV photon beam using single spin echo
MRI
(Peranan Anti-Oksida
Dalam Normosik Asid Methakrilik Gelatin (MAG) Dosmeter Gel Polimer Pada 6-MV Sinaran
Photon Menggunakan Aturan Nada Denyut Tunggal MRI)
Nik Noor Ashikin Nik Ab Razak1*, Azhar Abd Rahman1,
Sivamany Kandaiya1, Iskandar
Shahrim1, Nor Zakiah Yahaya1, Noor Faizura Zainal2,
Eng Kae Yann3
1School of Physics,
Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
2Imaging Department, Institut
Perubatan dan Pergigian Termaju (Advanced Medical & Dental Institute),
Universiti Sains Malaysia, 13200 Kepala Batas,
Penang, Malaysia
3Radiotherapy and Oncology Department,
Pantai Mutiara Hospital, 11900 Penang,
Malaysia
*Corresponding
author: ohm_poisse@yahoo.com
Abstract
The primary goal of radiation therapy is to
deliver a sufficient radiation dose to a target volume while minimizing the
dose to surrounding healthy tissue. In this study the dose response of
methacrylic acid-gelatin (MAG) polymer gel dosimeter using different type of
anti-oxidants; ascorbic acid (AscA) and tetrakis-hydroxy-methyl-phosphonium
chloride (THPC) is determined by using single spin echo sequence magnetic
resonance imaging (MRI). The concentrations of methacrylic acid (MAA) were
varied and using MRI, the optimal formulation that gives the maximum R2-dose
response of the polymer gel upon irradiation was determined. The polymer gel
was irradiated using a 6 MV photon from a linear accelerator (LINAC) for a dose
range varying from 0 to 20 Gy. The transverse relaxation rates (R2) of the
irradiated gels from MRI were read. A linear relationship between dose and R2
was obtained for a dose range of 0 to 20 Gy for MAG gel composed of ascorbic
acid (MAGAS) and linear response from 0 to 10 Gy for MAG gel composed of THPC
(MAGAT). The sensitivity of MAGAS showed lower sensitivity compared to MAGAT.
The optimum concentrations for the MAGAS and MAGAT polymer gel were 6% MAA and
5% gelatin as it gave the highest sensitivity of 0.0989 s-1Gy-1
and 1.1180 s-1Gy-1 respectively. The results are compared to Multiple Spin Echo
Sequence MRI.
Keywords: MAGAS polymer
gel, MAGAT polymer gel, dose sensitivity, ascorbic acid, THPC, single spin echo
sequence
Abstrak
Tujuan
utama radioterapi adalah untuk memberi dos sinaran yang mencukupi kepada
isipadu sasaran sementara meminimumkan jumlah dos di sekitar tisu yang sihat.
Dalam kajian ini tindak balas dos oleh asid metakrilik-gelatin (MAG) dosmeter
gel polimer menggunakan anti-oksida yang berlainan iaitu asid askorbik (AscA)
dan tetrakis-hydroxy-methyl-phosphonium chloride (THPC) telah di kaji
menggunakan aturan nada denyut tunggal MRI. Kepekatan methacrylic acid (MAA) di
ubah dan dengan menggunakan MRI, komposisi yang optimum di perolehi daripada
tindak balas dos yang maksimum pada gel selepas di iridiasi. Gel polimer
diiridiasi oleh 6-MV sinaran photon dari pemecut linear (LINAC) untuk linkungan
dos dari 0 sehingga 20 Gy. Kadar relaksasi melintang (R2) bagi gel yang telah
di iridiasi di ukur oleh MRI. Satu hubungan berkadar lurus di antara dos dengan
R2 di perolehi pada julat dos 0 sehingga 20 Gy bagi gel MAG yang mengandungi
asid askorbik (MAGAS) dan hubungan berkadar lurus dari 0 sehingga 10 Gy untuk
gel MAG yang mengandungi THPC (MAGAT). Kepekatan optimum bagi MAGAS dan MAGAT
gel polimer diperolehi daripada 6% MAA dan 5% gelatin yang menghasilkan nilai
sensitif yang paling tinggi iaitu masing-masing 0.0989 s-1Gy-1
dan 1.1180 s-1Gy-1. Hasil kajian akan di bandingkan
dengan urutan nada denyut berganda.
Kata kunci: Polimer gel
MAGAS, polimer gel MAGAT, sensitiviti dos, asid askorbik,
tetrakis-hydroxy-methyl-phosphonium chloride (THPC)
References
1.
Maryanski, M.J., Gore, J.C., Kennan, R.P. & Schulz, R.J.
(1993 ). NMR relaxation enhancement in gels polymerized and cross-linked by
ionizing radiation: a new approach to 3D dosimetry. MRI Magn. Reson. Imaging, 11: 253–258.
2.
Day, M.J., Andrews, H.L., Murphy, R.E. & Lebrun, E.J. (1957).
Gel dosimeter for depth dose measurements. Review
of Scientific Instruments, 28: 329–332.
3.
Day, M.J. and G. Stein. (1950). Chemical effects of ionising
radiation in some gels. Nature, 166: 146–147.
4.
Doran, S.J., K.K. Koerkamp, M.A. Bero, P. Jenneson, E.J.
Morton, and W.B. Gilboy. (2001). A CCD-based optical CT scanner for
high-resolution 3D imaging of radiation dose distributions: equipment
specifications, optical simulations and preliminary results. Phys. Med. Biol., 46: 3191–3213.
5.
Doran, S.J. (2013). How to perform an optical CT scan: an
illustrated guide. Journal of Physics:
Conference Series, 444 (1): 012004.
6.
Jirasek, A. (2010). Alternative imaging modalities for polymer gel
dosimetry. Journal of Physics: Conference
Series, 250: 012070.
7.
Baldock, C., Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M.
Lepage, K.B. McAuley, M. Oldham, and L.J. Schreiner. (2010). Polymer gel
dosimetry. Phys. Med. Biol., 55 p.
R1–R63
8.
Doran, S.J. (2010). Imaging and 3-D dosimetry: top tips for
MRI and optical CT. Journal of Physics:
Conference Series, 250(1): 012086.
9.
Low, D.A., J. Markman, J.F Dempsey, S. Mutic, M. Oldham, R.
Venkatesan, E.M. Haacke, and J.A. Purdy. (2000.). Noise
in polymer gel measurements using MRI. Med.
Phys., 27: 1814-1817.
10.
De Deene, Y., R. Van de Walle, E. Achten, and C. De Wagter.
(1998). Mathematical analysis and experimental investigation of noise in
quantitative magnetic resonace imaging applied in polymer gel dosimetry. Sig Proc., 70:. 85-101.
11.
De Deene, Y. and C. Baldock. (2002).Optimization of multiple
spin-echo sequences for 3D polymer gel dosimetry. Phys. Med.Biol., 47: 3117-3141.
12.
Baldock, C., M. Lepage, S. Back, P. Murry, P. Jayasekera, D.
porter, and T. Kron. (2001). Dose resolution in radiotherapy polymer gel
dosimetry: effect of echo spacing in MRI pulse sequence. Phys. Med. Biol., 46: 449-460.
13.
Maryanski, M.J., R.J. Schulz, G.S. Ibbotq, J.C. Gatenby, J.
Xiell, D. Hortonq, and J.C. Gore. (1994). Magnetic resonance imaging of radiation dose
distributions using a polymer-gel dosimeter. Phys. Med. Biol., 39: 1437-1455.
14.
Hepworth, S.J., M.O. Leach, and S. Dorran. (1999). Dynamics of polymerisation in polyacrylamide
gel (PAG) dosimeters: (II) modelling oxygen diffusion. Phys. Med. Biol., 440: 3105
-3113.
15.
Maryanski, M.J., G.S. Ibbott, P. Eastman, R.J. Schulz, and
J.C. Gore. (1996). Radiation therapy dosimetry using resonance imaging of
polymer gels. Med. Phys., 23: 699–705.
16.
Baldock, C., R.P. Burford, N. Billingham, G.S. Wagner, S.
Patval, R.D. Badawi, and S.F. Keevil. (1998). Experimental procedure for the
manufacture and calibration of polyacrylamide gel (PAG) for magnetic resonance
imaging (MRI) radiation dosimetry. Phys.
Med.Biol., 43: 695-702.
17.
Fong, P.M., D.C. Keil, M.D. Does, and J.C. Gore. (2001). Polymer
gels for magnetic resonance imaging of radiation dose distributions at normal
room atmosphere. Phys. Med. Biol., 46:
3105–3113.
18.
De Deene, Y., C. Hurley, A. Venning, K. Vergote, M. Mather,
B..J Healy, and C. Baldock. (2002). A basic study of some normoxic polymer gel
dosimeters. Phys. Med. Biol., 47 p.
3441–3463.
19.
Ibbott, G.S., M.J. Maryanski, P. Eastman, S.D. Holcomb, Y.S.
Zhang, R.G. Avison, M. Sanders, and J.C. Gore. (1997). 3D visualization and
measurement of conformal dose-distributions using MRI of BANG-gel dosimeters. Int.J. Radiat. Oncol. Biol. Phys., 38: 1097–1103.
20.
Oldham, M., I.B. Baustert, C. Lord, T.A.R. Smith, M. McJury, M.
Leach, A.P. Warrington, and S. Webb. (1998). An investigation into the dosimetry of a 9
field tomotherapy irradiation using BANG-gel dosimetry. Phys. Med. Biol., 43:
1113–1132.
21.
Jason J.S. Lee, Chia-Jung Tsai, Man-Kuok Lo, Yung-Hui Huang ,
Chien-Chuan Chen, Jay Wu, Yeu-Sheng Tyan, and Tung-Hsin Wud. (2008). Investigation
of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry
with MSE MR imaging. Nuclear Instruments
and Methods in Physics Research B, 266: 2199–2202.
22.
Jirasek, A. (2006). Experimental investigations of polymer gel
dosimeters. J.Physics: Conference Series, 56: 23–34.
23.
Venning, A., B. Healy, K. Nitschk, and C Baldock. (2005). Investigation
of the MAGAS normoxic polymer gel dosimeter with Pyrex glass walls for clinical
radiotherapy dosimetry. Nuclear
Instruments and Methods in Physics Research A, 555: 396–402.
24.
Shin-ichiro, H., Y. Munenori, U. Shuji, H. Kiyofumi, K.
Takahiro, k.B. McAuley, and T. Takahiro. (2010). A study on the role of gelatin in
methacrylic-acid-based gel dosimeters. Radiation
Physics ans Chemistry, 79: 803–808
25.
Yoshioka, M., S. Hayashi, S. Usui, K. Haneda, H. Numasaki, T.
Teshima, and T. Tominaga. (2009).
A
new polymer gel dosimeter composed of methacrylic acid,agarose gel and THPC
with gelatin. J.Physics: Conference
Series, 164: 012013.