The Malaysian Journal of Analytical Sciences Vol 17 No 1 (2013): 38 – 49

 

 

 

AN EXPERIMENTAL DESIGN APPROACH FOR  THE ANALYSIS OF LIQUID PHASE PRODUCTS IN  WATER FOR HYDROGENOLYSIS OF GLYCEROL  USING  IMMERSED SOLID-PHASE MICROEXTRACTION

 

(Pendekatan Reka Bentuk Eksperimen Untuk Analisis Produk Fasa Cecair Dalam Air Bagi Tindak Balas Hidrogenolisis Gliserol Menggunakan Rendaman Mikroekstraksi Fasa Pepejal)

 

Noraini Hamzah1,2*, Rozita Osman1,  Mohd Ambar Yarmo2

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

2Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: norainihamzah@gmail.com

 

 

Abstract

In this study, a response surface methodology (RSM) was applied to optimize the immersed-solid-phase microextraction (immersed-SPME) conditions for the first time using a polyacrylate (PA) coated fiber. This was to determine liquid phase compounds in water for hydrogenolysis  reaction of glycerol. There are a three-factor response surface experimental design was used to evaluate the interactive effects of extraction temperature (30-70 ºC), extraction time (10-30 minutes) and desorption time (2-18 minutes) on the analysis of liquid phase compounds in water for hydrogenolysis of glycerol using immersed-solid-phase microextraction (immersed-SPME). The extraction conditions using immersed-SPME were optimized in order to achieve high enrichment of the analytes from aqueous samples. The isolated compounds from the SPME fiber were desorbed  and separated on a capillary polar column of a gas chromatography-flame ionization detector (GC-FID). The extraction time and desorption time were found significant in increasing the  amount of glycerol in aqueous hydrogenolysis of glycerol. Nevertheless, the effect of extraction temperature was not significant. In terms of interactions between the effects, the relation between extraction temperature and extraction time was the most significant. The optimised immersed-SPME conditions were at extraction temperature of 27 °C, extraction time of 30 minutes and 15 minutes of desorption time. Thus, the application of SPME was found to be a rapid and effective technique in the determination of glycerol and  propylene glycol compounds in aqueous hydrogenolysis glycerol.

 

Keywords: Solid phase microextraction (SPME), Hydrogenolysis ,Glycerol, Response Surface Method (RSM)

 

References

1.       Furikado, I., Miyazawa, T., Koso, S., Shimao, A., Kunimori, K. Tomishige, K. (2007). Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen.  Green Chemistry  9 (6): 582-588.

2.       Miyazawa, T., Koso, S., Kunimori, K. Tomishige, K. (2007). Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin.  Applied Catalysis A: General  318: 244-251.

3.       Feng, J., Fu, H., Wang, J., Li, R., Chen, H. Li, X. (2008). Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature.  Catalysis Communications  9 (6): 1458-1464.

4.       Alhanash, A., Kozhevnikova, E.F. Kozhevnikov, I.V. (2008). Hydrogenolysis of glycerol to propanediol over Ru: Polyoxometalate bifunctional catalyst.  Catalysis Letters  120 (3-4): 307-311.

5.       Bolado, S., Treviño, R.E., García-Cubero, M.T. González-Benito, G. (2010). Glycerol hydrogenolysis to 1, 2 propanediol over Ru/C catalyst.  Catalysis Communications  12, (2): 122-126.

6.       Guo, L., Zhou, J., Mao, J., Guo, X. Zhang, S. (2009). Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols.  Applied Catalysis A: General  367(1-2): 93-98.

7.       Balaraju, M., Rekha, V., Sai Prasad, P.S., Prasad, R.B.N. Lingaiah, N. (2008). Selective hydrogenolysis of glycerol to 1, 2 propanediol over Cu-ZnO catalysts.  Catalysis Letters  126, (1-2), 119-124.

8.       Roy, D., Subramaniam, B. Chaudhari, R.V. (2010). Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition.  Catalysis Today  156 (1-2): 31-37.

9.       De Oliveira, A.R.M., Cesarino, E.J. Bonato, P.S. (2005). Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine. Chromatography B: Analytical Technologies in the Biomedical and Life Sciences  818 (2): 285-291.

10.    Bianchi, F., Careri, M., Mangia, A., Mattarozzi, M. Musci, M. (2008). Experimental design for the optimization of the extraction conditions of polycyclic aromatic hydrocarbons in milk with a novel diethoxydiphenylsilane solid-phase microextraction fiber.   Chromatography A  1196-1197 (1-2): 41-45.

11.    Ferrari, F., Sanusi, A., Millet, M. Montury, M. (2004). Multiresidue method using SPME for the determination of various pesticides with different volatility in confined atmospheres.  Analytical and Bioanalytical Chemistry  379 (3): 476-483.

12.    Larreta, J., Vallejo, A., Bilbao, U., Usobiaga, A., Arana, G. Zuloaga, O. (2007). Headspace-solid-phase microextraction preconcentration of phenols, indoles and on-fibre derivatised volatile fatty acids in liquid and gas samples from cow slurries.  Separation Science  30 (14): 2293-2304.

13.    Zhang, Y.and Zhang, J., (2008). Optimization of headspace solid-phase microextraction for analysis of ethyl carbamate in alcoholic beverages using a face-centered cube central composite design.  Analytica Chimica Acta  627 (2): 212-218.

14.    Ossiander, L., Reichenberg, F., McLachlan, M.S. Mayer, P. (2008). Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples.  Chemosphere  71 (8): 1502-1510.

15.    Januszkiewicz, J., Sabik, H., Azarnia, S. Lee, B. (2008). Optimization of headspace solid-phase microextraction for the analysis of specific flavors in enzyme modified and natural Cheddar cheese using factorial design and response surface methodology.  Chromatography A  1195 (1-2): 16-24.

16.    Bogusz Jr, S., de Marchi Tavares de Melo, A., Zini, C.A. Godoy, H.T. (2011). Optimization of the extraction conditions of the volatile compounds from chili peppers by headspace solid phase micro-extraction.  Journal of Chromatography A  1218 (21): 3345-3350.

17.    Negreira, N., Rodríguez, I., Rubí, E. Cela, R. (2010). Solid-phase microextraction followed by gas chromatography-mass spectrometry for the determination of ink photo-initiators in packed milk. Talanta  82 (1): 296-303.

18.    Cam, D., Gagni, S., Lombardi, N. Punin, M.O. (2004). Solid-phase microextraction and gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental solid matrices. Chromatographic Science  42 (6): 329-335.

 

 

 

 

Previous                    Content                    Next