The Malaysian Journal of Analytical
Sciences Vol 17 No 1 (2013): 146 – 152
Penentuan kualiti minyak masak dan lemak
komersial menggunakan teknik kimometik
(Determination of Commercials Cooking Oils and Fats
Using Chemometrics Methods)
1Pusat Pengajian Sains Kimia & Teknologi Makanan,
Fakulti Sains & Teknologi,
Universiti Kebangsaan Malaysia, 43600 Bangi,Selangor,
Malaysia
2Universiti Teknologi MARA, 72007 Kuala Pilah, Negeri
Sembilan
*Corresponding author: azwani79@ukm.my
Abstrak
Dalam kajian
ini, kaedah kimometrik telah digunakan bagi menentukan kualiti beberapa jenis
minyak masak komersil daripada dua jenama yang berbeza. Sampel minyak masak
yang telah digunakan ialah minyak zaitun, minyak bunga matahari dan mentega
dalam dua keadaan yang berbeza, iaitu segar dan digoreng. Kaedah konvensional
dilakukan untuk menentukan kualiti minyak, iaitu peratus asid lemak bebas,
nilai iodin dan nilai peroksida. Sebanyak 12 sampel minyak telah dianalisis
menggunakan spektroskopi inframerah fourier transformasi (FTIR) pada jalur 4000-400
cm-1. Stimulasi komputer telah dilakukan berdasarkan pencaman corak
FTIR dan data pencaman corak dioptimumkan kepada model analisis komponen utama
(PCA) dan kuasa dua terkecil separa (PLS). Model PCA digunakan dalam kajian ini
bagi membezakan sifat-sifat antara minyak komersial segar dan minyak digoreng.
Kemudian model PLS digunakan untuk mendapatkan ujian pengesahan antara
kedua-dua minyak. Ujian ini dapat membandingkan hasil yang diramal oleh kaedah PLS
dengan nilai yang diperoleh menggunakan kaedah konvensional. Keputusan yang
diperoleh menunjukkan ujian pengesahan bagi minyak komersial mempunyai nilai
kecerunan graf iaitu 0.90. Ini menunjukkan kaedah kimometik adalah signifikan
dengan kaedah konvensional.
Kata kunci : Kimometrik;
kualiti minyak; PCA; PLS
Abstract
In this study,
chemometric method has been used in determining the oil quality. The samples
used were olive oil, sunflower oil and butter from two different brands. Two
different conditions were applied, either it was fresh or fried. Titratio, a
conventional method was used to determine free fatty acids content (FFA),
iodine value (IV), and peroxide value (PV). Twelve samples were then used for
analysis and their FTIR spectra were measured at 4000-400 cm-1. The
computer stimulation was used to process the data based on their pattern
recognition which optimized by principal component analysis (PCA) and partial
least squares (PLS). PCA model was used to distinguish the properties between
fresh and fried oil. The PLS model was used to predict the value for validation
test in comparison with conventional results. Results showed the validation value
for fresh oil was 0.90. This indicated the chemometric method was in agreement
with conventional method.
Keywords: Chemometric;
Oil quality; PCA; PLS
References
1. Sinclair, R.G., McKay, A.F., Myers, G.S. & Jones, R.N. (1952). The
Infrared Absorption Spectra of Unsaturated Fatty Acids and Esters1. Journal
of the American Chemical Society, 74 (10): 2578-2585.
2.
Arnold, R.G. &
Hartung, T.E. (1971). Infrared spectroscopic determination of degree of
unsaturated of fats and oils. Journal of Food Science, 36 (1):
166-168.
3.
Bernard, J.L. &
Sims, L.G. (1980). IR spectroscopy for determination of total unsaturation.:
4.
Voort, F.R., Ismail, A.A., Sedman, J., Dubois, J. &
Nicodemo, T. (1994). The determination of peroxide value by fourier transform
infrared spectroscopy. Journal of the American Oil Chemists’
Society, 71 (9): 921-926.
5.
Ho, M.M. & Sue,
T.T., A review on the quantitative
analysis of fats and oils using FTIR, M.P.O.B. (MPOB), Editor 1999. p.
30-37.
6.
Moh, M.H., Che Man, Y.B., Badlishah, B.S., Jinap, S., Saad,
M.S. & Abdullah, W.J.W. (1999). Quantitative Analysis of Palm Carotene
Using Fourier Transform Infrared and Near Infrared Spectroscopy. JAOCS,
Journal of the American Oil Chemists Society, 76 (2): 249-254.
7.
Hussein, M.Z., Tarmizi, R.S.H., Zainal, Z., Ibrahim, R. &
Badri, R.M. (1996). Preparation and characterization of active carbons from oil
palm shells. Carbon, 34 (11): 1447-1453.
8.
Wesolowski, M., Suchacz, B. (2001). Classification of
rapeseed and soybean oils by use of unsupervised pattern-recognition methods
and neural networks. J.Anal Chem, 3
(30): 323-371.
9.
Brereton, R.G., Chemometrics:
Data Analysis for the Laboratory and Chemical Plant. 2003, Chichester, UK:
John Wiley & Sons, Ltd.
10.
Riccardo Leardi, A.L.G. (1998). Genetic Algorithms applied to
feature selection in PLS Regression : how and when to use them. Chemometrics
and Intelligent Laboratory Systems, 41: 195-207.
11.
Guillén, M.D. &
Cabo, N. (1997). Infrared spectroscopy in the study of edible oils and fats. Journal
of the Science of Food and Agriculture, 75 (1): 1-11.