The Malaysian Journal of Analytical Sciences Vol 15 No 2 (2011): 202 – 212

 

 

 

RADIATION HAZARD FROM NATURAL RADIOACTIVITY IN THE SEDIMENT OF THE EAST COAST PENINSULAR MALAYSIA EXCLUSIVE ECONOMIC ZONE (EEZ)

 

(Hazard Sinaran Dari Radionuklid Tabii Dalam Sedimen Di Zon Ekslusif Ekonomi (ZEE) Perairan Pantai Timur Semenanjung Malaysia)

 

Yii Mei-Wo*, Nurrul Assyikeen Md. Jaffary and Zaharudin Ahmad

 

Waste And Environmental Technology Division

Malaysian Nuclear Agency

43000 Kajang, Malaysia

 

*Corresponding author: yii@nuclearmalaysia.gov.my

 

 

Abstract

Sixteen marine sediment cores from selected locations within the EEZ were collected for determination of NORM concentrations. The samples were dried, finely ground, sealed in a container and stored for more than 30 days to establish secular equilibrium between 226Ra and 228Ra and their respective radioactive progenies. They were counted and quantified using high-purity germanium (HPGe) detector coupled to spectrometer at respective progeny energy peak. Three calculated parameters from NORM concentrations, i.e. the Radium equivalent (Raeq), Representative level index (Igr), External hazard index (Hex) are ranged between 68.6 – 210.5 Bq/kg (mean 143.1 ± 27.7 Bq/kg), 0.50 – 1.54 (mean 1.04 ± 0.20) and 0.19 – 0.57 (mean 0.39 ± 0.07 Bq/kg), respectively. This is well below the recommended limit value of 370 Bq/kg (for Raeq) and unity (for Hex). It is also slightly less than the background level radiation from soil in Peninsular Malaysia, Igr ~ 1.5. Therefore, the additional radiation exposure to peoples handling the samples is small, when compared to the background radiation received by them. The data is discussed and compared with those given in the literature.

 

Keywords: EEZ, sediment, radium equivalent activity, representative level index, external hazard index.

 

References

1.       Ahmad-Taufek, A. R., Ahmad-Termizi, R. & Abdul-Khalik, W. (2004). Analysis of The Concentration of Natural Radionuclides in rivers in Kota Tinggi District, Malaysia. Journal of Nuclear and Related Technologies 1, 41 – 52.

2.       Akram, M., Qureshi, R. M., Ahmad, N., Solaija, T. J., Mashiatullah, A., Ayub, M. A. & Irshad, S. (2004). Determination of Natural and Artificial Radionuclides in Seawater and Sediments off Gwadar Coast, Arabian Sea. The Nucleus 41, 19 – 25.

3.       Myrick, T. E., Berven, B. A. & Haywood, F. F. (1983). Determination of concentrations of selected radionuclides in surface soil in the U.S. Health Physics 45, 631 – 642.

4.       Nagaya, Y. & Saiki, M. (1967). Accumulation of radionuclides in coastal sediments of Japan (I). Fallout radionuclides in some coastal sediments in 1964–1965. Journal of Radiation Research 81, 37 – 43.

5.       Yang, Y. X., Wu, X. M., Jiang, Z. Y., Wang, W. X., Lu, J. G., Lin, J., Wang, L. M. & Hsia, Y. F. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area. China, Applied Radiation Isotopes 63, 255 – 259.

6.       Nabil, M. H., Tetsuo, I., Masahiro, H., Atsuyuki, S., Shinji, T., Masahiro, F. & Sarata, K. S. (2010). Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan. Journal of Radioanalytical and Nuclear Chemistry 283, 15 – 21.

7.       Narayana, Y., Somashekarappa, H. M., Narunakara, N., Avadhani, D. N., Mahesh, H. M. & Siddappa, K. (2001). Natural radioactivity in the soil samples of coastal Karnataka of South India. Health Physics 80, 24 – 33.

8.       Ahmed, N. K. & El-Arabi, A. G. M. (2005). Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. Journal of Environmental Radioactivity 84, 51 – 64.

9.       Koide, M., Bruland, K. W. & Goldberg, E. D. (1973). Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediment. Geochimica et Cosmochimica Acta 37, 1171 – 1187.

10.    Meriwether, J. R., Beck, J. N., Keeley, D. F., Langley, M. P., Thompson, R. H. & Young, J. C. (1958). Radionuclides in Louisiana soils. Journal of Environmental Quality 17, 562 – 568.

11.    Osburn, W. S. (1965). Primordial Radionuclides: Their distribution, movement, and possible effect within terrestrial ecosystems. Health Physics 11, 1275 – 1295.

12.    UNSCEAR (2000). Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly, with scientific annexes, United Nations, New York.

13.    Malaysian Nuclear Agency (2006). Laporan Kemajuan Kontrak Perkhidmatan Penyelidikan Sinaran di Malaysia, Progress Report, Bangi, Malaysia. (in Malays)

14.    Omar, M., Ibrahim, M. Y., Hassan, A., Lau, H. M. & Ahmad, Z. (1990). Enhanced Radium Level in Tin Mining Areas in Malaysia. In: Proceedings of an International Conference on High Levels of Natural Radiation. M. Sohrabi, J.U. Ahmad and S.A. Durrani (eds.). 3 – 7 Nov 1990, Ramsar, Islamic Republic of Iran. 191 – 195.

15.    Yahaya, R., Che-Rosli, C. M., Yasir, M. S., Amran, A. M., Ismail, B. & Sukiman, S. (1997). Analysis of Fall-out and Naturally Occuring Radioancitve Elements in Selangor. Malaysia Journal Analytical Sciences, 3, 237 – 241.

16.    Yasir, M. S., Amran, A. M., Farhana, I., Siti-Qalila, M. T. & Mohd-Rashidan, Z. A. (2006). Analisis 238U, 232Th, 226Ra dan 40K dalam Sampel Amang, Tanah dan Air di Dengkil, Selangor Menggunakan Spektrometri Gama. Malaysia Journal Analytical Sciences, 10, 35 – 40.

17.    Zal U’yun, W. M, Zaharudin, A., Abdul-Kadir, I., Yii, M. W., Norfaizal, M., Jalal, S., Kamarozaman, I., Khairul-Nizam, R. & Maziah, M. (2005). Kajian Awal ke Atas Taburan Radionuklid Tabii Di Perairan Pantai Timur Semenanjung Malaysia. Malaysia Journal Analytical Sciences, 9, 325 – 337.

18.    Zal U’yun, W. M., Mohamed, C. A. R., Yii, M. W., Zaharudin, A., Kamaruzaman, I. & Abdul-Kadir, I. (2010). Vertical inventories and fluxes of 210Pb, 228Ra and 226Ra at southern South China Sea and Malacca Straits. Journal of Radioanalytical and Nuclear Chemistry, 286, 107 – 113.

19.    Dowdall, M. & O’Dea, J. (2002). 226Ra/238U disequilibrium in an upland organic soil exhibiting elevated natural radioactivity. Journal of Environmental Radioactivity 59, 91 – 104.

20.    Yii, M. W., Zaharudin, A. & Abdul-Kadir, I. (2009). Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Applied Radiation Isotopes 67, 630 – 635.

21.    Chen, S. B., Zhu, Y. G. & Hu, Q. H. (2005). Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity 82, 223 – 236.

22.    Sam, A. K., Ahamed, M. M. O., EI-Khangi, F. A., El-Nigumi, Y. O. & Holm, E. (1998). Radioactivity levels in the Red Sea Coastal Environment of Sudan. Marine Pollution Bulletin 36, 19 – 26.

23.    Stranden, E. (1979). A simple method for measuring the radon diffusion coefficient and exhalation rate from building materials. Health Physics 37, 242 – 244.

24.    Berekta, J. & Mathew, P. J. (1985). Natural radioactivity of Australian building materials waste and by-products. Health Physics 48, 87 – 95.

25.    UNSCEAR (1982). Ionizing Radiation: Sources and Biological Effects. United Nations, New York.

26.    Alam, M. N., Chowdhury, M. I., Kamal, M., Ghose, S. & Ismail, M. N. (1999). The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh. Journal of Environmental Radioactivity 46, 243 – 250.

27.    Seddeek, M. K., Badran, H. M., Sharshar, T. & Elnimr, T. (2005). Characteristics, spatial distribution and vertical profile of gamma-ray emitting radionuclides in the coastal environment of North Sinai. Journal of Environmental Radioactivity 84, 21 – 50.

28.    Malanca, A., Pessina, V. & Dallara, G. (1993). Assessment of the natural radioactivity in the Brazilian state of Rio Grande do Norte. Health Physics 65, 298 – 302.

29.    UNSCEAR (1993). Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly, with scientific annexes, United Nations, New York.

 

Previous                    Content                    Next