The Malaysian Journal of Analytical Sciences Vol 15 No 2 (2011):
202 212
RADIATION HAZARD FROM NATURAL
RADIOACTIVITY IN THE SEDIMENT OF THE EAST COAST PENINSULAR MALAYSIA EXCLUSIVE
ECONOMIC ZONE (EEZ)
(Hazard Sinaran Dari Radionuklid Tabii Dalam
Sedimen Di Zon Ekslusif Ekonomi (ZEE) Perairan Pantai Timur Semenanjung
Malaysia)
Yii Mei-Wo*, Nurrul Assyikeen Md. Jaffary and Zaharudin Ahmad
Waste And Environmental Technology Division
Malaysian Nuclear Agency
43000 Kajang, Malaysia
*Corresponding author: yii@nuclearmalaysia.gov.my
Abstract
Sixteen marine
sediment cores from selected locations within the EEZ were collected for
determination of NORM concentrations. The samples were dried, finely ground, sealed
in a container and stored for more than 30 days to establish secular equilibrium
between 226Ra and 228Ra and their respective radioactive
progenies. They were counted and quantified using high-purity germanium (HPGe)
detector coupled to spectrometer at respective progeny energy peak. Three
calculated parameters from NORM concentrations, i.e. the Radium equivalent (Raeq),
Representative level index (Igr), External hazard index (Hex) are ranged between 68.6
210.5 Bq/kg (mean 143.1 ± 27.7 Bq/kg), 0.50 1.54 (mean 1.04 ± 0.20) and
0.19 0.57 (mean 0.39 ± 0.07 Bq/kg), respectively. This is well
below the recommended limit value of 370 Bq/kg (for Raeq) and unity
(for Hex). It is also slightly less than the background level
radiation from soil in Peninsular Malaysia, Igr ~ 1.5. Therefore, the additional
radiation exposure to peoples handling the samples is small, when compared to
the background radiation received by them. The data is discussed and compared
with those given in the literature.
Keywords: EEZ, sediment, radium equivalent activity, representative level
index, external hazard index.
References
1.
Ahmad-Taufek, A. R., Ahmad-Termizi, R. & Abdul-Khalik, W.
(2004). Analysis of The Concentration of Natural Radionuclides in rivers in
Kota Tinggi District, Malaysia. Journal of Nuclear and Related Technologies
1, 41 52.
2.
Akram, M., Qureshi,
R. M., Ahmad, N., Solaija, T. J., Mashiatullah, A., Ayub, M. A. & Irshad,
S. (2004). Determination of Natural and Artificial Radionuclides in Seawater
and Sediments off Gwadar Coast, Arabian Sea. The Nucleus 41, 19 25.
3.
Myrick, T. E.,
Berven, B. A. & Haywood, F. F. (1983). Determination
of concentrations of selected radionuclides in surface soil in the U.S. Health
Physics 45, 631 642.
4.
Nagaya, Y. &
Saiki, M. (1967). Accumulation of radionuclides in coastal sediments of Japan (I).
Fallout radionuclides in some
coastal sediments in 19641965. Journal of Radiation Research 81, 37 43.
5.
Yang, Y. X., Wu, X. M., Jiang, Z. Y., Wang, W. X., Lu, J. G., Lin,
J., Wang, L. M. & Hsia, Y. F. (2005). Radioactivity concentrations in soils
of the Xiazhuang granite area. China, Applied Radiation Isotopes 63, 255 259.
6.
Nabil, M. H., Tetsuo,
I., Masahiro, H., Atsuyuki, S., Shinji, T., Masahiro, F. & Sarata, K. S.
(2010). Assessment of the natural radioactivity using two techniques for the
measurement of radionuclide concentration in building materials used in Japan. Journal of Radioanalytical and Nuclear
Chemistry 283, 15 21.
7.
Narayana, Y., Somashekarappa, H. M., Narunakara, N., Avadhani, D.
N., Mahesh, H. M. & Siddappa, K. (2001). Natural radioactivity in the soil
samples of coastal Karnataka of South India. Health Physics 80, 24 33.
8.
Ahmed, N. K. & El-Arabi, A. G. M. (2005). Natural
radioactivity in farm soil and phosphate fertilizer and its environmental
implications in Qena governorate, Upper Egypt. Journal of Environmental
Radioactivity 84, 51 64.
9.
Koide, M., Bruland, K. W. & Goldberg, E. D. (1973).
Th-228/Th-232 and Pb-210 geochronologies in marine and lake sediment. Geochimica
et Cosmochimica Acta 37, 1171 1187.
10.
Meriwether, J. R., Beck, J. N., Keeley, D. F., Langley, M. P.,
Thompson, R. H. & Young, J. C. (1958). Radionuclides in Louisiana soils. Journal
of Environmental Quality 17, 562
568.
11.
Osburn, W. S. (1965). Primordial Radionuclides: Their
distribution, movement, and possible effect within terrestrial ecosystems. Health
Physics 11, 1275 1295.
12.
UNSCEAR (2000). Sources,
Effects and Risks of Ionizing Radiation. Report to the General Assembly,
with scientific annexes, United Nations, New York.
13.
Malaysian Nuclear Agency (2006). Laporan Kemajuan Kontrak Perkhidmatan Penyelidikan Sinaran di Malaysia,
Progress Report, Bangi, Malaysia. (in Malays)
14.
Omar, M., Ibrahim, M. Y., Hassan, A., Lau, H. M. & Ahmad, Z.
(1990). Enhanced Radium Level in Tin Mining Areas in Malaysia. In: Proceedings of an International
Conference on High Levels of Natural Radiation. M. Sohrabi, J.U. Ahmad
and S.A. Durrani (eds.). 3 7 Nov 1990, Ramsar, Islamic Republic of Iran. 191
195.
15.
Yahaya, R., Che-Rosli, C. M., Yasir, M. S.,
Amran, A. M., Ismail, B. & Sukiman, S.
(1997). Analysis of Fall-out and Naturally Occuring Radioancitve Elements in
Selangor. Malaysia Journal Analytical Sciences, 3, 237 241.
16.
Yasir, M. S., Amran, A. M., Farhana, I.,
Siti-Qalila, M. T. & Mohd-Rashidan, Z. A. (2006). Analisis
238U, 232Th, 226Ra
dan 40K dalam Sampel Amang, Tanah dan Air di Dengkil, Selangor
Menggunakan Spektrometri Gama. Malaysia Journal Analytical Sciences, 10, 35 40.
17.
Zal Uyun, W. M,
Zaharudin, A., Abdul-Kadir, I., Yii, M. W., Norfaizal, M., Jalal, S.,
Kamarozaman, I., Khairul-Nizam, R. & Maziah, M. (2005). Kajian Awal ke Atas
Taburan Radionuklid Tabii Di Perairan Pantai Timur Semenanjung Malaysia. Malaysia
Journal Analytical Sciences,
9, 325 337.
18.
Zal Uyun, W. M., Mohamed, C. A. R., Yii, M. W., Zaharudin, A.,
Kamaruzaman, I. & Abdul-Kadir, I. (2010). Vertical inventories and fluxes
of 210Pb, 228Ra and 226Ra at southern South
China Sea and Malacca Straits. Journal of
Radioanalytical and Nuclear Chemistry, 286, 107 113.
19.
Dowdall, M. &
ODea, J. (2002). 226Ra/238U disequilibrium in an upland
organic soil exhibiting elevated natural radioactivity. Journal
of Environmental Radioactivity 59, 91 104.
20.
Yii, M. W., Zaharudin, A. & Abdul-Kadir, I. (2009).
Distribution of naturally occurring radionuclides activity concentration in
East Malaysian marine sediment. Applied Radiation Isotopes 67, 630
635.
21. Chen, S. B., Zhu, Y. G. & Hu, Q. H. (2005). Soil to plant
transfer of 238U, 226Ra and 232Th on a uranium
mining-impacted soil from southeastern China. Journal
of Environmental Radioactivity 82, 223 236.
22.
Sam, A. K., Ahamed,
M. M. O., EI-Khangi, F. A., El-Nigumi, Y. O. & Holm, E. (1998).
Radioactivity levels in the Red Sea Coastal Environment of Sudan. Marine Pollution Bulletin 36, 19 26.
23.
Stranden, E. (1979). A simple method for measuring the radon
diffusion coefficient and exhalation rate from building materials. Health
Physics 37, 242 244.
24.
Berekta, J. & Mathew, P. J. (1985). Natural radioactivity of Australian building materials
waste and by-products. Health Physics
48, 87 95.
25.
UNSCEAR (1982). Ionizing
Radiation: Sources and Biological Effects. United Nations, New York.
26.
Alam, M. N., Chowdhury, M. I., Kamal, M., Ghose, S. & Ismail,
M. N. (1999). The 226Ra, 232Th and 40K
activities in beach sand minerals and beach soils of Coxs Bazar, Bangladesh. Journal
of Environmental Radioactivity 46, 243
250.
27.
Seddeek, M. K., Badran, H. M., Sharshar, T. & Elnimr, T.
(2005). Characteristics, spatial distribution and vertical profile of gamma-ray
emitting radionuclides in the coastal environment of North Sinai. Journal of
Environmental Radioactivity 84, 21
50.
28.
Malanca, A., Pessina, V. & Dallara, G. (1993). Assessment of
the natural radioactivity in the Brazilian state of Rio Grande do Norte. Health
Physics 65, 298 302.
29.
UNSCEAR (1993). Sources,
Effects and Risks of Ionizing Radiation. Report to the General Assembly,
with scientific annexes, United Nations, New York.