Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1669

 

Research Article

 

Quantification of flavonoids in papaya leaves under combined microwave and solvent extraction techniques: LC-TOF-MS analysis

 

Izni Atikah Abd Hamid1*, Arif Zaidi Jusoh2, Nazlina Zulbadli1, and Hadijah Hassan2

 

1Centre for Green Bioprocess Engineering, Faculty of Engineering, Built Environment and Information Technology, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia

2Food Science and Technology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: iznihamid@segi.edu.my

 

Received: 1 September 2025; Revised: 23 October 2025; Accepted: 29 October 2025; Published: 28 December 2025

 

Abstract

Carica papaya leaves are a rich source of flavonoids, which have been reported to have anticancer, anti-inflammatory and antioxidant properties. Previous extraction methods, such as supercritical carbon dioxide and solvent extraction, have limitations, including low flavonoid yield and high solvent or time requirements. Therefore, this study integrated microwave pretreatment with solvent extraction (MSE) to enhance recovery efficiency while reducing processing time and solvent consumption. The aim was to optimize the extraction parameters for maximum total flavonoid content (TFC) yield and to characterize its flavonoid compounds. TFC quantification was performed spectrophotometrically using quercetin as the standard. A single-factor experiment was conducted to investigate the effects of individual parameters of particle size (0.425 - 1.180 mm), microwave power (100 - 500 W), solvent type (methanol, ethanol, acetone, chloroform and water), solid-liquid ratio (1:10 - 1:30), and extraction time (1- 8 h) on TFC. The highest TFC of 37.94 mg QE/g DS was obtained under optimum conditions: 0.425 mm particle size, 300 W microwave power, ethanol as the solvent, 1:15 solid-liquid ratio, and 3 hours of extraction time. LC-TOF-MS analysis revealed 5 major flavonoids: isobavachalcone, sakuranin, kaempferol 3-O-beta-D-glucosylgalactoside, kaempferol-3-O-rutinoside and 7-hydroxy-2,4,5-trimethoxyisoflavone. This study demonstrates that optimized MSE is a simple, scalable and energy-efficient approach for isolating valuable flavonoids from C. papaya leaves with potential industrial and pharmaceutical applications.

 

Keywords: flavonoid, combined microwave and solvent extraction, papaya leaves, TFC, LC-TOF-MS

 


References

1.       Kopustinskiene, D. M, Jakstas, V., Savickas, A. and Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2), 1–7.

2.       Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M. and Al-Mssallem, M.Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27 (9), 2901.

3.       Wang, X., Peng, M. J., Wang, Z. H., Yang, Q.L. and Peng, S. (2020). Ultrasound-microwave assisted extraction of flavonoid compounds from eucommia ulmoides leaves and an evaluation of their antioxidant and antibacterial activities. Archives Biological Sciences, 72(2), 211–221,

4.       Abdel-Halim, S., Ibrahim, M., Abdel Mohsen, M., Abou-Setta, L., Sleem, A. and El-Missiry, M. (2021). The influence of the extraction method on polyphenols, flavonoids composition and anti-hyperlipidemic properties of papaya leaves (Carica papaya Linn.). Bulletin National Research Centre, 45(1), 584.

5.       Kasote, D. M., Jagtap, S. D., Thapa, D., Khyade, M. S. and Russell, W. R. (2017). Herbal remedies for urinary stones used in India and China: A review. Journal Ethnopharmacology, 203: 55–68.

6.       Khor, B. K. K., Chear, N. Y. J., Azizi, J. and Khaw, K. Y. (2021). Chemical composition, antioxidant and cytoprotective potentials of carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods. Molecules, 26(5), 1489.

7.       Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299-4315.

8.       Chaves, J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. D. F., ... and Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern techniques. Frontiers in chemistry8, 507887.

9.       Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., and Lee, Y. Y. (2023). A review on application of ultrasound and ultrasound assisted technology for seed oil extraction. Journal of Food Science and Technology, 60(4), 1222-1236.

10.    Souza, D. E. S., Melo, J. J. C. D., Santos, F. F. D., Vasconcelos, A. L. D. S., Jesus, A. D. S. D., Freitas, L. D. S., ... and Soares, C. M. F. (2024). Microwave-assisted vs. conventional extraction of Moringa oleifera seed oil: Process optimization and efficiency comparison. Foods, 13(19), 3141.

11.    Zin, M. M., Nagy, K., Bánvölgyi, S., Abrankó, L. and Nath, A. (2022). Effect of microwave pretreatment on the extraction of antioxidant-rich red color betacyanin, phenolic, and flavonoid from the crown of cylindra-type beetroot (Beta vulgaris L.). Journal of Food Process Engineering, 45(12), 14175.

12.    Cao, S., Liang, J., Chen, M., Xu, C., Wang, X., Qiu, L., ... and Hu, W. (2025). Comparative analysis of extraction technologies for plant extracts and absolutes. Frontiers in Chemistry, 13, 1536590.

13.    Álvarez, A., Terreros, S., Cocero, M. J. and Mato R. B. (2021). Microwave pretreatment for the extraction of anthocyanins from saffron flowers: Assessment of product quality. Antioxidants, 10 (7), 1–19.

14.    Velisdeh, Z. J., Najafpour Darzi, G., Poureini, F., Mohammadi, M., Sedighi, A., Bappy, M. J. P., ... and Mills, D. K. (2024). Turning waste into wealth: optimization of microwave/ultrasound-assisted extraction for maximum recovery of quercetin and total flavonoids from red onion (Allium cepa L.) skin waste. Applied Sciences, 14(20), 9225.

15.    Raja, K. S., Taip, F. S., Azmi, M. M. Z. and Shishir, M. R. I. (2019). Effect of pre-treatment and different drying methods on the physicochemical properties of Carica papaya L. leaf powder. Journal of the Saudi Society of Agricultural Sciences, 18(2), 150–156.

16.    Phuyal, N., Jha, P. K., Raturi, P. P. and Rajbhandary, S. (2020). Total phenolic, flavonoid contents, and antioxidant activities of fruit, seed, and bark extracts of Zanthoxylum armatum DC. Scientific World Journal, 2020, 8780704.

17.    Tan, J. C. X., Chuah, C. H. and Cheng, S. F. (2017). A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: Optimisation, oil quality and effect of prolonged exposure. Journal of Sciences Food Agriculture, 97(6), 1784–1789.

18.    Yu, F., Wan, N., Zheng, Q., Li, Y., Yang, M. and Wu, Z. (2021). Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from kumquat peel. Food Sciences Nutrition, 9(5), 2372–2380.

19.    Konagano, E. M. H., da Costa, H. S. C., de Souza, J. N. S. and Herman, C. A. N. P. (2020). One-factor-at-a-time Optimisation of the aqueous extraction of the peroxidase from fresh amazonian cacao beans. International Food Research Journal, 27(4), 694–701.

20.    Makanjuola, S. A. (2017). Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend. Food Science Nutrition, 5(6), 1179–1185.

21.    Da Porto, C., Decorti, D. and Natolino, A. (2016). Microwave pretreatment of Moringa oleifera seed: effect on oil obtained by pilot-scale supercritical carbon dioxide extraction and soxhlet apparatus. Journal of Supercritical Fluids, 107, 38–43.

22.    Sepahpour, S., Selamat, J., Manap, M. Y. A., Khatib, A. and Razis, A. F. A. (2018). Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules, 23(2), 402.

23.    Crăciun A.L. and Gutt, G. (2023). Optimization of experimental parameters in the solvent extraction of trans-resveratrol from pruning waste of Vitis vinifera, Fetească Neagră Variety. Applied Sciences (Switzerland), 13 (2), 823.

24.    Monfared, K. E., Rafiee, Z. and Jafari, S.M. (2012). Phenolic content and antioxidant activity of Falcaria vulgaris extracts. Analytical Chemistry Letters, 2(3): 159-170.

25.    Taweekayujan, S., Somngam, S. and Pinnarat, T. (2023). Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon, 9(7), 17942.

26.    Lozano Pérez, A. S., Lozada Castro, J. J., & Guerrero Fajardo, C. A. (2024). Application of microwave energy to biomass: a comprehensive review of microwave-assisted technologies, optimization parameters, and the strengths and weaknesses. Journal of Manufacturing and Materials Processing, 8(3), 121.

27.    Boutemtam, L., Nadjib Boukhatem, M., Messaoudi, M., Begaa, S., Benarfa, A. and Ferhat, M. A. (2020). Understanding the phenomena of extraction of essential oils by the microwave accelerated distillation process: Case of the Washington Navel variety. European Journal of Biological Research, 10(3), 167–181.

28.    Lasunon, P. and Sengkhamparn, N. (2022). Effect of ultrasound-assisted, microwave-assisted and ultrasound-microwave-assisted extraction on pectin extraction from industrial tomato waste. Molecules, 27(4), 1157.

29.    Sinulingga, S., Claudia Adma, A., Dias Athallah Monanda, M. and Oswari, L. D. (2024). Effect of solvent polarity on secondary metabolite content and α-glucosidase enzyme IC50 of Dendrophthoe pentandra (L). Miq leaves extract. JIFI, 22(1), 1–7.

30.    Sahu, N. K., Balbhadra, S. S., Choudhary, J. and V. Kohli, V. (2012). Exploring pharmacological significance of chalcone scaffold: A review. Current Medicine Chemistry, 19(2), 209–225,

31.    Wang, M., Lin, L., Lu, J. J. and Chen, X. (2021). Pharmacological review of isobavachalcone, a naturally occurring chalcone. Pharmacology Research, 165,105483.

32.    Ouyang, L., Xu, Z., Tang, Y., Li, D., Yu, Z., Wen, Z., ... and Zhang, C. (2025). In vitro antibacterial and antibiofilm activities of isobavachalcone against Enterococcus faecalis clinical isolates from China. BMC Microbiology, 25(1), 105.

33.    Yang, L., Song, L., Zhao, S., Ma, C., Wu, D. and Wu, Y. L. (2019). Isobavachalcone reveals novel characteristics of methuosis-like cell death in leukemia cells. Chemical Biology Interaction, 304: 131-138.

34.    Li, B., Xu, N., Wan, Z., Ma, L., Li, H., Cai, W., ... and He, Z. (2019). Isobavachalcone exerts anti‑proliferative and pro‑apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway. Oncology Reports, 41(6), 3355-3366.

35.    Shi, J., Chen, Y., Chen, W., Tang, C., Zhang, H., Chen, Y., ... and Chen, J. (2018). Isobavachalcone sensitizes cells to E2‐induced paclitaxel resistance by down‐regulating CD 44 expression in ER+ breast cancer cells. Journal of Cellular and Molecular Medicine, 22(11), 5220-5230.

36.    Stompor, M. (2020). A review on sources and pharmacological aspects of sakuranetin. Nutrients, 12(2), 513.

37.    Ahmed, S., Parvez, M. K., Al-Dosari, M. S., Abdelwahid, M. A. S., Alhowiriny, T. A. and Al-Rehaily, A. J. (2023). Novel anti-hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea. Molecular Medicine Reports, 28 (3): 1–9.

38.    Shin, S., Park, J., Choi, H. Y., Bu, Y. and Lee, K. (2024). Sakuranetin as a potential regulator of blood pressure in spontaneously hypertensive rats by promoting vasorelaxation through calcium channel blockade. Biomedicines, 12(2), 346.

39.    Zang, Y., Zhang, L., Igarashi, K. and Yu, C. (2015). The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Function, 6 (3), 834–841.

40.    Calderón-Montańo, J. M., Burgos-Morón, E., Pérez-Guerrero, C. and López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Review Medicine Chemistry, 11(4), 298–344.

41.    Li-Li, D. O. U., Li, D. U. A. N., Long, G. U. O., Le-Le, L. I. U., and Ping, L. I. (2017). An UHPLC-MS/MS method for simultaneous determination of quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, isorhamnetin 3-O-rutinoside, bilobalide and ligustrazine in rat plasma, and its application to pharmacokinetic study of Xingxiong injection. Chinese Journal of Natural Medicines, 15(9), 710-720.

42.    Wang, Y., Tang, C. and Zhang, H. (2015). Hepatoprotective effects of kaempferol 3-o-rutinoside and kaempferol 3-o-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. Journal Food Drug Analysis, 23(2), 310–317.

43.    Zheng, W., Wang, H., Wang, X., Li, X., Hu, J., Zi, X., ... and Fu, Y. (2024). Kaempferol 3-O-rutinoside, a flavone derived from tetrastigma hemsleyanum diels et gilg, reduces body temperature through accelerating the elimination of IL-6 and TNF-α in a mouse fever model. Molecules, 29(7), 1641.

44.    Innocent, E. (2012). A new isoflavone glycoside from Dalbergia vacciniifolia (Fabaceae). Scientia Pharmaceutica, 80(2), 469–474.

45.    Perezg, R. M., Vargass, R., Perezg, S., Zavalas, M. and Perezg, C. (2000). Antiurolithiatic activity of 7-hydroxy-2,4,5- trimethoxyisoflavone and 7-hydroxy-4 -methoxyisoflavone from Eysenhardtia polystachya. Journal Herbs Spices Medicine Plants, 7(2), 27–34.

46.    Bei Tu, Y., Xiao, T., Yi Gong, G., Qi Bian, Y. and Fang Li, Y. (2020). A new isoflavone with anti-inflammatory effect from the seeds of Millettia pachycarpa. Natural Products Research, 34(7), 981–987.

47.    Wang, M., Lin, L., Lu, J. J. and Chen, X. (2021). Pharmacological review of isobavachalcone, a naturally occurring chalcone. Pharmacoligy Research, 165, 105483.

48.    Jan, R., Khan, M., Asaf, S., Lubna, Asif, S. and Kim, K. M. (2022). Bioactivity and therapeutic potential of kaempferol and quercetin: new insights for plant and human health. Plants, 111(9), 2623.

49.    Hamid, I. A. A., Zulbadli, N., Mohan, Y., Palanisamy, P., Jusoh, A. Z. and Hassan, H. (2025). Mathematical modeling approach on mass transfer behavior of papaya leaves oil in combined microwave and solvent extraction method. AIP Conference Proceedings, American Institute of Physics, 2025, 264681.