Malays. J.
Anal. Sci. Volume 29 Number 6 (2025): 1669
Research Article
Quantification of flavonoids in
papaya leaves under combined microwave and solvent extraction techniques:
LC-TOF-MS analysis
Izni Atikah Abd Hamid1*,
Arif Zaidi Jusoh2, Nazlina Zulbadli1, and Hadijah Hassan2
1Centre for Green Bioprocess Engineering, Faculty of
Engineering, Built Environment and Information Technology, SEGi University,
Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
2Food Science and Technology Research Centre, MARDI
Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia
*Corresponding author:
iznihamid@segi.edu.my
Received:
1 September 2025; Revised: 23 October 2025; Accepted: 29 October 2025;
Published: 28 December 2025
Abstract
Carica papaya leaves are a rich source of
flavonoids, which have been reported to have anticancer, anti-inflammatory and
antioxidant properties. Previous extraction methods, such as supercritical
carbon dioxide and solvent extraction, have limitations, including low flavonoid
yield and high solvent or time requirements. Therefore, this study integrated
microwave pretreatment with solvent extraction (MSE) to enhance recovery
efficiency while reducing processing time and solvent consumption. The aim was
to optimize the extraction parameters for maximum total flavonoid content (TFC)
yield and to characterize its flavonoid compounds. TFC quantification was
performed spectrophotometrically using quercetin as the standard. A
single-factor experiment was conducted to investigate the effects of individual
parameters of particle size (0.425 - 1.180 mm), microwave power (100 - 500 W),
solvent type (methanol, ethanol, acetone, chloroform and water), solid-liquid
ratio (1:10 - 1:30), and extraction time (1- 8 h) on TFC. The highest TFC of
37.94 mg QE/g DS was obtained under optimum conditions: 0.425 mm particle size,
300 W microwave power, ethanol as the solvent, 1:15 solid-liquid ratio, and 3
hours of extraction time. LC-TOF-MS analysis revealed 5 major flavonoids: isobavachalcone,
sakuranin, kaempferol 3-O-beta-D-glucosylgalactoside, kaempferol-3-O-rutinoside
and 7-hydroxy-2,4,5-trimethoxyisoflavone. This study demonstrates that
optimized MSE is a simple, scalable and energy-efficient approach for isolating
valuable flavonoids from C. papaya leaves with potential industrial and
pharmaceutical applications.
Keywords: flavonoid, combined microwave and
solvent extraction, papaya leaves, TFC, LC-TOF-MS
References
1.
Kopustinskiene,
D. M, Jakstas, V., Savickas, A. and Bernatoniene, J. (2020). Flavonoids as
anticancer agents. Nutrients, 12(2), 1–7.
2.
Al-Khayri,
J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M. and
Al-Mssallem, M.Q. (2022). Flavonoids as potential anti-inflammatory molecules:
A review. Molecules, 27 (9), 2901.
3.
Wang,
X., Peng, M. J., Wang, Z. H., Yang, Q.L. and Peng, S. (2020).
Ultrasound-microwave assisted extraction of flavonoid compounds from eucommia
ulmoides leaves and an evaluation of their antioxidant and antibacterial
activities. Archives Biological Sciences, 72(2), 211–221,
4.
Abdel-Halim,
S., Ibrahim, M., Abdel Mohsen, M., Abou-Setta, L., Sleem, A. and El-Missiry, M.
(2021). The influence of the extraction method on polyphenols, flavonoids
composition and anti-hyperlipidemic properties of papaya leaves (Carica
papaya Linn.). Bulletin National Research Centre, 45(1), 584.
5.
Kasote,
D. M., Jagtap, S. D., Thapa, D., Khyade, M. S. and Russell, W. R. (2017).
Herbal remedies for urinary stones used in India and China: A review. Journal
Ethnopharmacology, 203: 55–68.
6.
Khor,
B. K. K., Chear, N. Y. J., Azizi, J. and Khaw, K. Y. (2021). Chemical
composition, antioxidant and cytoprotective potentials of carica papaya leaf
extracts: A comparison of supercritical fluid and conventional extraction
methods. Molecules, 26(5), 1489.
7.
Osorio-Tobón, J. F.
(2020). Recent advances and comparisons of conventional and alternative
extraction techniques of phenolic compounds. Journal of Food Science
and Technology, 57(12), 4299-4315.
8.
Chaves,
J. O., De Souza, M. C., Da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P.
C., Machado, A. P. D. F., ... and Rostagno, M. A. (2020). Extraction of flavonoids from natural sources using modern
techniques. Frontiers in chemistry, 8, 507887.
9.
Thilakarathna, R. C. N.,
Siow, L. F., Tang, T. K., and Lee, Y. Y. (2023). A review on application of
ultrasound and ultrasound assisted technology for seed oil extraction. Journal
of Food Science and Technology, 60(4), 1222-1236.
10.
Souza, D. E. S., Melo, J.
J. C. D., Santos, F. F. D., Vasconcelos, A. L. D. S., Jesus, A. D. S. D.,
Freitas, L. D. S., ... and Soares, C. M. F. (2024). Microwave-assisted vs.
conventional extraction of Moringa oleifera seed oil: Process optimization and
efficiency comparison. Foods, 13(19), 3141.
11.
Zin,
M. M., Nagy, K., Bánvölgyi, S., Abrankó, L. and Nath, A. (2022). Effect of
microwave pretreatment on the extraction of antioxidant-rich red color
betacyanin, phenolic, and flavonoid from the crown of cylindra-type beetroot (Beta
vulgaris L.). Journal of Food Process Engineering, 45(12), 14175.
12.
Cao, S., Liang, J., Chen,
M., Xu, C., Wang, X., Qiu, L., ... and Hu, W. (2025). Comparative analysis of
extraction technologies for plant extracts and absolutes. Frontiers in
Chemistry, 13, 1536590.
13.
Álvarez,
A., Terreros, S., Cocero, M. J. and Mato R. B. (2021). Microwave pretreatment
for the extraction of anthocyanins from saffron flowers: Assessment of product
quality. Antioxidants, 10 (7), 1–19.
14.
Velisdeh, Z. J.,
Najafpour Darzi, G., Poureini, F., Mohammadi, M., Sedighi, A., Bappy, M. J. P.,
... and Mills, D. K. (2024). Turning waste into wealth: optimization of
microwave/ultrasound-assisted extraction for maximum recovery of quercetin and
total flavonoids from red onion (Allium cepa L.) skin waste. Applied
Sciences, 14(20), 9225.
15.
Raja,
K. S., Taip, F. S., Azmi, M. M. Z. and Shishir, M. R. I. (2019). Effect of
pre-treatment and different drying methods on the physicochemical properties of
Carica papaya L. leaf powder. Journal of the Saudi Society of
Agricultural Sciences, 18(2), 150–156.
16.
Phuyal,
N., Jha, P. K., Raturi, P. P. and Rajbhandary, S. (2020). Total phenolic,
flavonoid contents, and antioxidant activities of fruit, seed, and bark
extracts of Zanthoxylum armatum DC. Scientific World Journal, 2020,
8780704.
17.
Tan,
J. C. X., Chuah, C. H. and Cheng, S. F. (2017). A combined microwave
pretreatment/solvent extraction process for the production of oil from palm
fruit: Optimisation, oil quality and effect of prolonged exposure. Journal of
Sciences Food Agriculture, 97(6), 1784–1789.
18.
Yu,
F., Wan, N., Zheng, Q., Li, Y., Yang, M. and Wu, Z. (2021). Effects of
ultrasound and microwave pretreatments on hydrodistillation extraction of
essential oils from kumquat peel. Food Sciences Nutrition, 9(5),
2372–2380.
19.
Konagano,
E. M. H., da Costa, H. S. C., de Souza, J. N. S. and Herman, C. A. N. P.
(2020). One-factor-at-a-time Optimisation of the aqueous extraction of the
peroxidase from fresh amazonian cacao beans. International Food Research Journal,
27(4), 694–701.
20.
Makanjuola,
S. A. (2017). Influence of particle size and extraction solvent on antioxidant
properties of extracts of tea, ginger, and tea–ginger blend. Food Science
Nutrition, 5(6), 1179–1185.
21.
Da
Porto, C., Decorti, D. and Natolino, A. (2016). Microwave pretreatment of Moringa
oleifera seed: effect on oil obtained by pilot-scale supercritical carbon
dioxide extraction and soxhlet apparatus. Journal of Supercritical Fluids,
107, 38–43.
22.
Sepahpour,
S., Selamat, J., Manap, M. Y. A., Khatib, A. and Razis, A. F. A. (2018).
Comparative analysis of chemical composition, antioxidant activity and
quantitative characterization of some phenolic compounds in selected herbs and
spices in different solvent extraction systems. Molecules, 23(2), 402.
23.
Crăciun
A.L. and Gutt, G. (2023). Optimization of experimental parameters in the
solvent extraction of trans-resveratrol from pruning waste of Vitis vinifera,
Fetească Neagră Variety. Applied Sciences (Switzerland), 13
(2), 823.
24.
Monfared,
K. E., Rafiee, Z. and Jafari, S.M. (2012). Phenolic content and antioxidant
activity of Falcaria vulgaris extracts. Analytical Chemistry Letters,
2(3): 159-170.
25.
Taweekayujan,
S., Somngam, S. and Pinnarat, T. (2023). Optimization and kinetics modeling of
phenolics extraction from coffee silverskin in deep eutectic solvent using
ultrasound-assisted extraction. Heliyon, 9(7), 17942.
26.
Lozano Pérez, A. S.,
Lozada Castro, J. J., & Guerrero Fajardo, C. A. (2024). Application of
microwave energy to biomass: a comprehensive review of microwave-assisted
technologies, optimization parameters, and the strengths and weaknesses. Journal
of Manufacturing and Materials Processing, 8(3), 121.
27.
Boutemtam,
L., Nadjib Boukhatem, M., Messaoudi, M., Begaa, S., Benarfa, A. and Ferhat, M.
A. (2020). Understanding the phenomena of extraction of essential oils by the
microwave accelerated distillation process: Case of the Washington Navel variety.
European Journal of Biological Research, 10(3), 167–181.
28.
Lasunon,
P. and Sengkhamparn, N. (2022). Effect of ultrasound-assisted,
microwave-assisted and ultrasound-microwave-assisted extraction on pectin
extraction from industrial tomato waste. Molecules, 27(4), 1157.
29.
Sinulingga,
S., Claudia Adma, A., Dias Athallah Monanda, M. and Oswari, L. D. (2024).
Effect of solvent polarity on secondary metabolite content and
α-glucosidase enzyme IC50 of Dendrophthoe pentandra (L).
Miq leaves extract. JIFI, 22(1), 1–7.
30.
Sahu,
N. K., Balbhadra, S. S., Choudhary, J. and V. Kohli, V. (2012). Exploring pharmacological
significance of chalcone scaffold: A review. Current Medicine Chemistry,
19(2), 209–225,
31.
Wang,
M., Lin, L., Lu, J. J. and Chen, X. (2021). Pharmacological review of
isobavachalcone, a naturally occurring chalcone. Pharmacology Research,
165,105483.
32.
Ouyang, L., Xu, Z., Tang,
Y., Li, D., Yu, Z., Wen, Z., ... and Zhang, C. (2025). In vitro antibacterial
and antibiofilm activities of isobavachalcone against Enterococcus faecalis
clinical isolates from China. BMC Microbiology, 25(1), 105.
33.
Yang,
L., Song, L., Zhao, S., Ma, C., Wu, D. and Wu, Y. L. (2019). Isobavachalcone
reveals novel characteristics of methuosis-like cell death in leukemia cells. Chemical
Biology Interaction, 304: 131-138.
34.
Li, B., Xu, N., Wan, Z.,
Ma, L., Li, H., Cai, W., ... and He, Z. (2019). Isobavachalcone exerts anti‑proliferative
and pro‑apoptotic effects on human liver cancer cells by targeting the
ERKs/RSK2 signaling pathway. Oncology Reports, 41(6),
3355-3366.
35.
Shi, J., Chen, Y., Chen,
W., Tang, C., Zhang, H., Chen, Y., ... and Chen, J. (2018). Isobavachalcone
sensitizes cells to E2‐induced paclitaxel resistance by
down‐regulating CD 44 expression in ER+ breast cancer cells. Journal
of Cellular and Molecular Medicine, 22(11), 5220-5230.
36.
Stompor, M. (2020). A
review on sources and pharmacological aspects of sakuranetin. Nutrients, 12(2),
513.
37.
Ahmed,
S., Parvez, M. K., Al-Dosari, M. S., Abdelwahid, M. A. S., Alhowiriny, T. A.
and Al-Rehaily, A. J. (2023). Novel anti-hepatitis B virus flavonoids
sakuranetin and velutin from Rhus retinorrhoea. Molecular Medicine
Reports, 28 (3): 1–9.
38.
Shin,
S., Park, J., Choi, H. Y., Bu, Y. and Lee, K. (2024). Sakuranetin as a
potential regulator of blood pressure in spontaneously hypertensive rats by
promoting vasorelaxation through calcium channel blockade. Biomedicines,
12(2), 346.
39.
Zang,
Y., Zhang, L., Igarashi, K. and Yu, C. (2015). The anti-obesity and
anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in
high-fat-diet mice. Food Function, 6 (3), 834–841.
40.
Calderón-Montańo,
J. M., Burgos-Morón, E., Pérez-Guerrero, C. and López-Lázaro, M. (2011). A review
on the dietary flavonoid kaempferol. Mini Review Medicine Chemistry,
11(4), 298–344.
41.
Li-Li,
D. O. U., Li, D. U. A. N., Long, G. U. O., Le-Le, L. I. U., and Ping, L. I.
(2017). An UHPLC-MS/MS method for
simultaneous determination of quercetin 3-O-rutinoside, kaempferol
3-O-rutinoside, isorhamnetin 3-O-rutinoside, bilobalide and ligustrazine in rat
plasma, and its application to pharmacokinetic study of Xingxiong injection. Chinese
Journal of Natural Medicines, 15(9), 710-720.
42.
Wang,
Y., Tang, C. and Zhang, H. (2015). Hepatoprotective effects of kaempferol
3-o-rutinoside and kaempferol 3-o-glucoside from Carthamus tinctorius L.
on CCl4-induced oxidative liver injury in mice. Journal Food Drug
Analysis, 23(2), 310–317.
43.
Zheng, W., Wang, H.,
Wang, X., Li, X., Hu, J., Zi, X., ... and Fu, Y. (2024). Kaempferol
3-O-rutinoside, a flavone derived from tetrastigma hemsleyanum diels et gilg,
reduces body temperature through accelerating the elimination of IL-6 and
TNF-α in a mouse fever model. Molecules, 29(7), 1641.
44.
Innocent,
E. (2012). A new isoflavone glycoside from Dalbergia vacciniifolia
(Fabaceae). Scientia Pharmaceutica, 80(2), 469–474.
45.
Perezg,
R. M., Vargass, R., Perezg, S., Zavalas, M. and Perezg, C. (2000).
Antiurolithiatic activity of 7-hydroxy-2′,4′,5′- trimethoxyisoflavone and 7-hydroxy-4′
-methoxyisoflavone from Eysenhardtia polystachya. Journal Herbs
Spices Medicine Plants, 7(2), 27–34.
46.
Bei
Tu, Y., Xiao, T., Yi Gong, G., Qi Bian, Y. and Fang Li, Y. (2020). A new
isoflavone with anti-inflammatory effect from the seeds of Millettia
pachycarpa. Natural Products Research, 34(7), 981–987.
47.
Wang,
M., Lin, L., Lu, J. J. and Chen, X. (2021). Pharmacological review of
isobavachalcone, a naturally occurring chalcone. Pharmacoligy Research,
165, 105483.
48.
Jan,
R., Khan, M., Asaf, S., Lubna, Asif, S. and Kim, K. M. (2022). Bioactivity and
therapeutic potential of kaempferol and quercetin: new insights for plant and
human health. Plants, 111(9), 2623.
49.
Hamid,
I. A. A., Zulbadli, N., Mohan, Y., Palanisamy, P., Jusoh, A. Z. and Hassan, H.
(2025). Mathematical modeling approach on mass transfer behavior of papaya
leaves oil in combined microwave and solvent extraction method. AIP
Conference Proceedings, American Institute of Physics, 2025, 264681.