Malays. J. Anal.
Sci. Volume 29 Number 6 (2025): 1633
Research Article
Catalytic activation of peroxymonosulfate with Mn and N
co-doped carbon allotropes for alizarin yellow R degradation
Ganapaty Manickavasagam, Wen-Da Oh*, and Mardiana
Saaid
School of Chemical Sciences, Universiti Sains Malaysia, 11800
Penang, Malaysia
*Corresponding author: ohwenda@usm.my
Received: 28 August 2025;
Revised: 4 November 2025; Accepted: 15 November 2025; Published: 28 December 2025
Abstract
Transforming waste into catalysts for wastewater treatment
embodies the circular economy concept and provides a sustainable approach to
eliminate recalcitrant azo dyes. In this study, carbon nanotubes (CNTs) and
biochar (BC) co-doped with Mn and N (i.e., Mn-N-CNT-1 and Mn-N-BC-1,
respectively), along with their control forms (i.e., X, N-X, and Mn-X-1, X =
CNT or BC), were synthesized via the pyrolysis method and systematically
compared in terms of peroxymonosulfate (PMS) activation performance for alizarin
yellow R (AYR) degradation, underlying mechanisms, stability, and
phytotoxicity. X-ray diffraction (XRD) analysis revealed that Mn-N-CNT-1
exhibited a higher degree of graphitization than Mn-N-BC-1, while no
crystalline Mn or Mn oxide phases were detected. Catalytic performance studies
revealed that CNT co-doped with Mn and N possesses superior ability to degrade
AYR (pseudo first-order rate constant (kapp) = 0.042 min-1,
84.6 % removal) compared to controls and BC-based catalysts. Quenching
experiments identified SO4•−, 1O2,
and nonradical electron transfer as the dominant pathways for AYR degradation.
Phytotoxicity assays confirmed that catalytic treatment reduced AYR toxicity,
enabling normal seed germination and growth. In short, these findings in this
study highlight CNT co-doped with Mn and N as efficient, reusable, and
environmentally safe PMS activators for sustainable wastewater remediation.
Keywords: wastewater
treatment, peroxymonosulfate activation, azo dye, biochar, carbon nanotubes
References
1. Li, Y., Zhang, D., Chen, Q., Chao, C., Sun, J., Dong,
S., and Sun, Y. (2022). Synthesis of rGO/g-C₃N₄ for methyl orange
degradation in activating peroxydisulfate under simulated solar light
irradiation. Journal of Alloys and Compounds, 907, 164500.
2. Li, X., Zhang, J., Jiang, Y., Hu, M., Li, S., and Zhai,
Q. (2013). Highly efficient biodecolorization/ degradation of Congo Red and
Alizarin Yellow R by chloroperoxidase from Caldariomyces fumago:
Catalytic mechanism and degradation pathway. Industrial and Engineering
Chemistry Research, 52(38), 13572–13579.
3. Binh, N. T., Khue, D. N., Van Chung, T., Hoa, N. T., and
Quang, D. S. (2019). Kinetic modeling of degradation for Alizarin Yellow R by
activated persulfate using Fe⁰ (ZVI) under UV light. Vietnam Journal
of Chemistry, 57(1), 46–51.
4. Ahmed, A., Usman, M., Yu, B., Ding, X., Peng, Q., Shen,
Y., and Cong, H. (2020). Efficient photocatalytic degradation of toxic Alizarin
Yellow R dye from industrial wastewater using biosynthesized Fe nanoparticles
and study of factors affecting the degradation rate. Journal of
Photochemistry and Photobiology B: Biology, 202, 111682.
5. Singh, G.
B., Vinayak, A., Mudgal, G., and Kesari, K. K. (2024). Azo dye bioremediation:
An interdisciplinary path to sustainable fashion. Environmental Technology and
Innovation, 36, 103832.
6. Xiao, G.,
Xu, T., Faheem, M., Xi, Y., Zhou, T., Moryani, H. T., Bao, J., and Du, J.
(2021). Evolution of singlet oxygen by activating peroxydisulfate and
peroxymonosulfate: A review. International Journal of Environmental Research
and Public Health, 18(7), 3344.
7. Li, H.,
Qin, X., Wang, K., Ma, T., and Shang, Y. (2024). Insight into metal-based
catalysts for heterogeneous peroxymonosulfate activation: A critical review. Separation
and Purification Technology, 333, 125900.
8. Brillas,
E. (2024). Recent trends on the catalytic activation of peroxymonosulfate for
the abatement of organic dyes in waters. Journal of Environmental Chemical
Engineering, 12(4), 113191.
9. Xiao, S.,
Cheng, M., Zhong, H., Liu, Z., Liu, Y., Yang, X., and Liang, Q. (2020).
Iron-mediated activation of persulfate and peroxymonosulfate in both
homogeneous and heterogeneous ways: A review. Chemical Engineering Journal, 384,
123265.
10. Kohantorabi,
M., Moussavi, G., and Giannakis, S. (2021). Innovations in metal- and
carbon-based catalysts for heterogeneous peroxymonosulfate activation: Focus on
radical versus nonradical degradation pathways. Chemical Engineering
Journal, 411, 127957.
11. Huang, W.,
Xiao, S., Zhong, H., Yan, M., and Yang, X. (2021). Activation of persulfates by
carbonaceous materials: A review. Chemical Engineering Journal, 418,
129297.
12. Pan, G.,
Wei, J., Xu, M., Li, J., Wang, L., Li, Y., Cui, N., Li, J., and Wang, Z.
(2023). Insight into boron-doped biochar as an efficient metal-free catalyst
for peroxymonosulfate activation: Role of –O–B–O– moieties. Journal of
Hazardous Materials, 445, 130479.
13. He, L.,
Liao, G., Xie, Z., Liu, Y., and Yang, Y. (2025). Fe–N co-doped highly
graphitized biochar for peroxymonosulfate activation toward degradation of
persistent organic pollutants. Environmental Research, 286, 122786.
14. Huang, J.,
Zhu, Y., Bian, H., Song, L., Liu, Y., Lv, Y., Ye, X., Lin, C., and Li, X.
(2023). Enhanced peroxydisulfate activation with B and Fe co-doped biochar from
bark for rapid degradation of guaiacol. Molecules, 28(22), 7591.
15. Yang,
X., Du, C., Chen, P., Zhang, S., Zhang, H., Xu, Q., and Zhuang, Z. (2025). Phosphorus-doped biochar loaded with cobalt
nanoparticles for rapid acetaminophen degradation via peroxymonosulfate
activation. Applied Surface Science, 713, 164309.
16. Huang, X.,
Yu, Z., Shi, Y., Liu, Q., and Fang, S. (2022). Highly efficient activation of
peroxymonosulfate by Co,S co-doped bamboo biochar for sulfamethoxazole
degradation. Journal of Environmental Chemical Engineering, 10(5),
108380.
17. Tao, Y.,
Sun, S., Hu, Y., Gong, S., Bao, S., Li, H., Zhang, X., Yuan, Z., and Wu, X.
(2024). Activation of peroxymonosulfate by Fe,O co-embedded biochar for
tetracycline degradation. Catalysts, 14(9), 556.
18. Sun, M.,
Fang, W., Liang, Q., Xing, Y., Lin, L., and Luo, H. (2024). Efficient
acetaminophen degradation via peroxymonosulfate activation by Mn/N co-doped
biochar. Journal of Environmental Chemical Engineering, 12(3), 112647.
19. Qu, G.,
Jia, P., Tang, S., Pervez, M. N., Pang, Y., Li, B., Cao, C., and Zhao, Y.
(2024). Enhanced peroxymonosulfate activation via heteroatomic N-doping defects
for BPA degradation. Journal of Hazardous Materials, 461, 132626.
20. Manickavasagam,
G., He, C., Lin, K.-Y. A., Saaid, M., and Oh, W.-D. (2024). Advances and
challenges of metal–heteroatom co-doped biochar as peroxymonosulfate
activators. Environmental Research, 252, 118919.
21. Manickavasagam,
G., He, C., Zhou, T., Hamidon, T. S., Hussin, M. H. H., Saaid, M., and Oh,
W.-D. (2025). Stimulating catalytic activity of chars for norfloxacin removal
via nitrogen and manganese functionalization. Separation and Purification
Technology, 369, 133161.
22. Shende, R.
C., Muruganathan, M., Mizuta, H., Akabori, M., and Sundara, R. (2018).
Simultaneous synthesis of two nitrogen-rich carbon nanomaterials for
all-solid-state symmetric supercapacitors. ACS Omega, 3(12),
17276–17286.
23. Shi, X.,
Huang, Z., Xu, J., Lin, S., Hong, Y., Zhang, Q., Xiao, J., and Hong, J. (2025).
Co and N co-doped carbon nanotube catalysts for PMS activation. Separation
and Purification Technology, 353, 128528.
24. Lim, X.-X.,
Low, S.-C., Tan, K. Q., Lin, K.-Y. A., Khoerunnisa, F., Lisak, G., and Oh,
W.-D. (2024). Role of Ca in NiMoCa catalysts on carbon nanotube growth from
face masks. Journal of Analytical and Applied Pyrolysis, 179, 106439.
25. Meng, H.,
Zhou, J., Nie, C., Li, W., Li, D., Zhang, Y., and Ao, Z. (2025). Mn-doped
biochar induced peroxymonosulfate activation for phenol degradation. Journal
of Hazardous Materials, 492, 138031.
26. Gasim, M.
F., Veksha, A., Lisak, G., Low, S.-C. C., Hamidon, T. S., Hussin, M. H., and
Oh, W.-D. (2023). Importance of carbon structure for N,S co-doping in
ciprofloxacin removal. Journal of Colloid and Interface Science, 634,
586–600.
27. Fu, X., Li,
Y., Cui, K., Liu, Y., and Lv, L. (2024). Mn and P co-doped biochar catalyst for
persulfate degradation of tetracycline hydrochloride. Journal of
Environmental Chemical Engineering, 12(6), 114228.
28. Manickavasagam,
G., He, C., Zhou, T., Lin, K.-Y. A., Hamidon, T. S., Hussin, M. H., Saaid, M., and
Oh, W.-D. (2024). Sustainable design of Co,N co-doped hydrochar as a PMS
activator. Chemical Engineering Journal, 502, 157976.
29. Zhou, H.,
Kuang, Y., Gan, Y., Jiang, P., Pu, Y., and Yang, Y. (2025). Remediation of
lead-contaminated soil using Fe–Mn–Ni layered double hydroxide biochar. Chemical
Engineering Journal Advances, 100785.
30. Mutuma, M.
K., Njogu, E. M., and Gichumbi, J. M. (2024). Synthesis and characterization of
biochar–carbon nanotube composites for Rhodamine B adsorption. IOSR Journal
of Applied Chemistry, 17(5): 27–42.
31. Jin, B.,
Wang, Q., Sainio, J., Saveleva, V. A., Jiang, H., Shi, J., Ali, B., Kallio,
A.-J., Huotari, S., Sundholm, D., Han, N., and Kallio, T. (2024). Amorphous
carbon-modulated quantum dot NiO for oxygen evolution. Applied Catalysis B:
Environment and Energy, 358, 124437.
32. Chin,
Y.-T., Manickavasagam, G., Lim, X.-X., Khoerunnisa, F., and Oh, W.-D. (2025).
Biomass- and plastic-derived Co–N co-doped CNTs as PMS activators. Journal
of Water Process Engineering, 72, 107635.
33. Zhang, M.,
Wen, Z., Zhang, L., Wang, Q., Zang, L., Feng, Q., Gu, Y., Wang, W., Ma, K.,
Zhang, H., Ji, D., Liu, J., Shi, X., and Yu, F. (2025). Radical and nonradical
PMS activation by Fe₁₋ₓS/lignin biochar nanocomposites. Chemical
Engineering Journal, 520, 166153.
34. Li, G.,
Cao, X., Meng, N., Huang, Y., Wang, X., Gao, Y., Li, X., Yang, T., Li, B.,
Zhang, Y., Lyu, X., and Liang, Y. (2022). Fe₃O₄-supported biochar
for PMS activation in urea degradation. Chemical Engineering Journal, 433,
133595.
35. Jeong,
W.-G., Kim, J.-G., Alshawabkeh, A. N., Larese-Casanova, P., Lim, J., and Baek,
K. (2025). Electrochemical activation of PMS with biochar for p-nitrophenol
removal. Journal of Water Process Engineering, 71, 107276.
36. Chen, X.,
Oh, W.-D., Hu, Z.-T., Sun, Y.-M., Webster, R. D., Li, S.-Z., and Lim, T.-T.
(2018). Enhancing sulfacetamide degradation by PMS activation with N-doped
graphene. Applied Catalysis B: Environmental, 225, 243–257.
37. Zhu, S.,
Huang, X., Ma, F., Wang, L., Duan, X., and Wang, S. (2018). Catalytic removal
of aqueous contaminants on N-doped graphitic biochars. Environmental Science
and Technology, 52(15), 8649–8658.
38. Xiao, Y.,
Mu, J., Peng, Q., Feng, J., Zhou, B., Zhang, N., and Liu, B. (2025).
Oxygen-vacancy-enhanced PMS activation via carbon-hybrid defective
Mn₂O₃. Journal of Environmental Chemical Engineering, 13(1),
115032.
39. Liu, T.,
Li, C., Chen, X., Chen, Y., Cui, K., Wang, D., and Wei, Q. (2024). PMS
activation by Fe@N co-doped biochar for sulfamethoxazole degradation. International
Journal of Molecular Sciences, 25(19), 10528.
40. Guo, L.,
Liu, D., Han, R., Yin, A., Gong, G., Li, S., Chen, R., Yang, J., Liu, Z., and
Zhi, K. (2025). Advances in persulfate activation by carbon-based materials. Crystals,
15(5), 432.
41. Zhong, C.,
Zhang, S., Yang, S., Yuan, B., Xu, Q., Xie, Z., and Du, C. (2023). Mo,N
co-doped iron biochar activating PMS for BPA degradation. Chemical
Engineering Journal, 466, 143298.
42. Chen, W.,
Lei, L., Zhu, K., He, D., He, H., Li, X., Wang, Y., Huang, J., and Ai, Y.
(2023). PMS activation by Fe–N–S co-doped carbocatalyst. Journal of
Environmental Sciences, 129, 213–228.
43. Wu, Q.,
Zhang, Y., Meng, H., Wu, X., Liu, Y., and Li, L. (2024). Cu/N co-doped biochar
activating PMS for selective paracetamol degradation. Chemosphere, 357,
141858.
44. Xue, Y.,
Kamali, M., Costa, M. E. V., Thompson, I. P., Huang, W., Rossi, B., Appels, L.,
and Dewil, R. (2024). PMS activation by Fe,N co-doped walnut shell biochar. Environmental
Pollution, 355, 124018.
45. Kong, L.,
Zhu, M., and Zhan, J. (2025). Nitrogen-doped biochar aerogels as efficient PMS
activators. Nanomaterials, 15(11), 865.
46. Huong, P.
T., Jitae, K., Al Tahtamouni, T. M., Le Minh Tri, N., Kim, H.-H., Cho, K. H., and
Lee, C. (2020). Biochar-derived PMS activation for oxidation of organic
contaminants. Journal of Water Process Engineering, 33, 101037.
47. Yan, B.,
Li, Q., Chen, X., Deng, H., Feng, W., and Lu, H. (2022). O₃/PMS advanced
oxidation technology for highly concentrated organic wastewater. Separations,
9(12), 444.
48. Wu, L.,
Lin, Y., Zhang, Y., Wang, P., Ding, M., Nie, M., Yan, C., and Chen, S. (2021).
Ca(OH)₂-mediated PMS activation for bisphenol S degradation. RSC
Advances, 11(53), 33626–33636.
49. Mashentseva,
A. A., Aimanova, N. A., Parmanbek, N., Temirgaziyev, B. S., Barsbay, M., and
Zdorovets, M. V. (2022). Plant-mediated synthesis of ZnO nanoparticles for
Alizarin Yellow R removal. Nanomaterials, 12(19), 3293.
50. Neta, P.,
Huie, R. E., and Ross, A. B. (1988). Rate constants for reactions of inorganic
radicals in aqueous solution. Journal of Physical and Chemical Reference
Data, 17(3), 1027–1284.
51. Basu-Modak,
S., and Tyrrell, R. M. (1993). Singlet oxygen: A primary effector in the
ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer
Research, 53(19), 4505–4510.
52. Wang, J.,
Shen, M., Wang, H., Du, Y., Zhou, X., Liao, Z., Wang, H., and Chen, Z. (2020).
Red mud-modified sludge biochar for the activation of peroxymonosulfate:
Singlet oxygen-dominated mechanism and toxicity prediction. Science of the
Total Environment, 740, 140388.
53. Wu, S.,
Liu, H., Yang, C., Li, X., Lin, Y., Yin, K., Sun, J., Teng, Q., Du, C., and
Zhong, Y. (2020). High-performance porous carbon catalysts doped with iron and
nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chemical
Engineering Journal, 392, 123683.
54. Xu, L., Fu,
B., Sun, Y., Jin, P., Bai, X., Jin, X., Shi, X., Wang, Y., and Nie, S. (2020).
Degradation of organic pollutants by Fe/N co-doped biochar via
peroxymonosulfate activation: Synthesis, performance, mechanism, and potential
for practical application. Chemical Engineering Journal, 400, 125870.
55. Gan, Y.,
Zhu, K., Xia, W., Zhu, S., Tong, Z., Chen, W., Wang, Y., and Lin, B. (2022).
Strongly coupled Fe/N co-doped graphitic carbon nanosheets/carbon nanotubes for
rapid degradation of organic pollutants via peroxymonosulfate activation:
Performance, mechanism, and degradation pathways. Separation and
Purification Technology, 302, 122113.
56. Patil, D.
S., Chavan, S. M., and Oubagaranadin, J. U. K. (2016). A review of technologies
for manganese removal from wastewaters. Journal of Environmental Chemical
Engineering, 4(1), 468–487.