Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1638

 

Research Article

 

Dual crosslinking of κ-carrageenan with glutaraldehyde and N’N’-methylenebisacrylamide (MBA) for high-efficiency methyl orange removal

 

Wan Farahiyah Wan Kamarudin 1,2, Asmadi Ali1*, Sofiah Hamzah1, Nik Amirul Naim Che Zainuddin1, and Abd Rahman Mat Amin2

 

1Faculty of Ocean Engineering Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Faculty of Applied Sciences, University Teknologi MARA, Cawangan Terengganu, Kampus Bukit Besi 23200, Dungun, Terengganu, Malaysia

 

*Corresponding author: asmadi@umt.edu.my

 

Received: 7 August 2025; Revised: 15 October 2025; Accepted: 30 November 2025; Published: 29 December 2025

 

Abstract

The contamination of water sources by synthetic dyes such as methyl orange (MO) poses serious ecological and health hazards due to their persistence and toxicity. This study aims to develop a novel biopolymer adsorbent based on dual-crosslinked κ-carrageenan for the effective removal of MO from aqueous solutions. The adsorbent was synthesized using acrylic acid as the monomer, ammonium persulfate as the initiator, and a dual crosslinker system comprising N’N’-methylenebisacrylamide (MBA) and glutaraldehyde. Batch adsorption experiments were performed to evaluate the effects of pH, contact time, adsorbent dosage, initial dye concentration, and temperature. The material was characterized using SEM, FTIR, and EDX to assess surface morphology and functional group changes. The modified beads exhibited enhanced porosity and nitrogen incorporation, confirming successful crosslinking. Maximum MO percent removal of 95.26% was achieved at 5 ppm, pH 6–8, and 35 °C within 150 minutes. Isotherm analysis revealed excellent correlation with both Langmuir (R²=0.9999) and Freundlich (R²=1.000) models, indicating monolayer adsorption on a homogeneous surface. The Langmuir maximum adsorption capacity was 5.00 mg/g. These findings suggest that dual-crosslinked κ-carrageenan is a promising, biodegradable, and cost-effective adsorbent for environmental remediation of dye-contaminated wastewater.

 

Keywords: methyl orange adsorption, adsorption isotherm, biopolymer adsorbent, crosslinked κ-Carrageenan, dye removal

 


References

1.        Ahmad, T., and Danish, M. (2022). A review of avocado waste-derived adsorbents: Characterizations, adsorption characteristics, and surface mechanism. Chemosphere, 296, 134036.

2.        Alam, M. Z., Bari, M. N., and Kawsari, S. (2022). Statistical optimization of methylene blue dye removal from a synthetic textile wastewater using indigenous adsorbents. Environmental and Sustainability Indicators, 14, 100176.

3.        Albatrni, H., Qiblawey, H., and Al-Marri, M. J. (2022). Walnut shell-based adsorbents: A review study on preparation, mechanism, and application. Journal of Water Process Engineering, 45, 102527.

4.        Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., Jasemizad, T., Padhye, L. P., Singh, G., Vinu, A., Sarkar, B., Kirkham, M. B., Rinklebe, J., Wang, S., Wang, H., Balasubramanian, R., and Siddique, K. H. M. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 822, 153555.

5.        Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., Jasemizad, T., Padhye, L. P., Singh, G., Vinu, A., Sarkar, B., Kirkham, M. B., Rinklebe, J., Wang, S., Wang, H., Balasubramanian, R., and Siddique, K. H. M. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Science of the Total Environment, 822, 153555.

6.        Bozbay, R., and Orakdogen, N. (2025). Tailoring amino-functionalized n-alkyl methacrylate ester-based bio-hybrids for adsorption of methyl orange dye: Controllable macromolecular architecture via polysaccharide-integrated ternary copolymerization. International Journal of Biological Macromolecules, 299, 140034.

7.        Dhillon, A., Sharma, S., Singh, N., and Kumar, D. (2022). Use of core–shell nanomaterials as potential adsorbents for fluoride remediation: Toward a sustainable ecosystem. Groundwater for Sustainable Development, 18, 100785.

8.        Fındık, S. (2025). Decolorization of cationic dyes methyl violet 2B and malachite green via a heterogeneous Fenton-like process using a novel magnetic zeolite–xanthan gum composite. International Journal of Biological Macromolecules, 307, 142193.

9.        Gkika, D. A., Mitropoulos, A. C., and Kyzas, G. Z. (2022). Why reuse spent adsorbents? The latest challenges and limitations. Science of the Total Environment, 822, 153612.

10.     Hamid, A. A., Alam, J., Shukla, A. K., Abdulraqeb, F., Ali, A., and Alhoshan, M. (2023). Sustainable removal of phenol from wastewater using a biopolymer hydrogel adsorbent comprising crosslinked chitosan and κ-carrageenan. International Journal of Biological Macromolecules, 251, 126340.

11.     Hao, R., Ji, H., Gao, L., Chen, J., Shi, Y., Yang, J., and Yuan, C. (2023a). Grafted natural melanin κ-carrageenan hydrogel bead adsorbents: New strategy for bioremediation of cationic dye contamination in aqueous solutions. Chemical Engineering Research and Design, 199, 1–10.

12.     Hao, R., Ji, H., Gao, L., Chen, J., Shi, Y., Yang, J., and Yuan, C. (2023b). Grafted natural melanin κ-carrageenan hydrogel bead adsorbents: New strategy for bioremediation of cationic dye contamination in aqueous solutions. Chemical Engineering Research and Design, 199, 1–10.

13.     Hassan, A. F., Alshandoudi, L. M., Awad, A. M., Mustafa, A. A., and Esmail, G. (2023). Synthesis of nanomagnetite/copper oxide/potassium carrageenan nanocomposite for adsorption and photo-Fenton degradation of Safranin-O: Kinetic and thermodynamic studies. Macromolecular Research, 31(7), 677–697.

14.     Hassan, A. F., El-Naggar, G. A., Esmail, G., and Shaltout, W. A. (2023). Efficient adsorption of methylene blue on novel triple nanocomposites of potassium κ-carrageenan, calcium alginate and nanohydroxyapatite obtained from sea scallop shells. Applied Surface Science Advances, 13, 100388.

15.     Hassanzadeh-Afruzi, F., Forouzandeh-Malati, M., Ganjali, F., Salehi, M. M., Maleki, A., and Nazarzadeh Zare, E. (2023). Carrageenan-grafted poly(acrylamide) magnetic nanocomposite modified with graphene oxide for ciprofloxacin removal from polluted water. Alexandria Engineering Journal, 82, 503–517.

16.     He, Q., Zhao, H., Teng, Z., Wang, Y., Li, M., and Hoffmann, M. R. (2022). Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances. Chemosphere, 303, 134987.

17.     Hui, Y., Liu, R., Mei, Z., and Xu, A. (2025). Engineering efficient carrageenan materials for simultaneously removing herbicide, eight anionic/cationic dyes and metal ion contaminants and adsorption mechanism. International Journal of Biological Macromolecules, 302, 140551.

18.     Hussain, S., Kamran, M., Khan, S. A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A. B., Rehman, W. U., Al-Ghamdi, Y. O., and Ghani, U. (2020). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composite films. International Journal of Biological Macromolecules168, 383-394.

19.     Hussain, S., Kamran, M., Khan, S. A., Shaheen, K., Shah, Z., Suo, H., Khan, Q., Shah, A. B., Rehman, W. U., Al-Ghamdi, Y. O., and Ghani, U. (2021). Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composite films. International Journal of Biological Macromolecules, 168, 383–394.

20.     Ihsanullah, I., Sajid, M., Khan, S., and Bilal, M. (2022). Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Separation and Purification Technology, 291, 120923.

21.     Kabir Ahmad, S. F., Kanadasan, G., Lee, K. T., and Vadivelu, V. M. (2024). Insight into recent advances in microalgae biogranulation in wastewater treatment. Critical Reviews in Biotechnology, 44(8), 1594–1609.

22.     Kalaiselvi, K., Mohandoss, S., Ahmad, N., Khan, M. R., and Manoharan, R. K. (2023). Adsorption of Pb²⁺ ions from aqueous solution onto porous κ-carrageenan/cellulose hydrogels: Isotherm and kinetics study. Sustainability, 15(12), 9534.

23.     Khir, N. H. M., Salleh, N. F. M., Ghafar, N. A., and Shukri, N. M. (2024). Mitigating health risks through biosorption: Effective removal of nickel (II) and chromium (VI) from water with acid-treated potato peels. Jurnal Kesehatan Lingkungan, 16(4), 312–320.

24.     Kulal, P., and Badalamoole, V. (2020). Hybrid nanocomposite of κ-carrageenan and magnetite as adsorbent material for water purification. International Journal of Biological Macromolecules, 165, 542–553.

25.     Lapwanit, S., Sooksimuang, T., and Trakulsujaritchok, T. (2018). Adsorptive removal of cationic methylene blue dye by κ-carrageenan/poly(glycidyl methacrylate) hydrogel beads: Preparation and characterization. Journal of Environmental Chemical Engineering, 6(5), 6221–6230.

26.     Liu, B., Gai, S., Lan, Y., Cheng, K., and Yang, F. (2022). Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms. Environmental Research, 212, 113353.

27.     Mahdavinia, G. R., Baghban, A., Zorofi, S., and Massoudi, A. (2014). κ-Carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water. Journal of Materials and Environmental Science, 5(2), 330–337.

28.     Majooni, Y., Fayazbakhsh, K., and Yousefi, N. (2024). Toward mechanically robust and highly recyclable adsorbents using 3D printed scaffolds: A case study of encapsulated carrageenan hydrogel. Chemical Engineering Journal, 494, 152672.

29.     Mamba, F. B., Mbuli, B. S., and Ramontja, J. (2024). Synergistic effect of ZnO/Ag₂O@g-C₃N₄ nanocomposites embedded in carrageenan matrix for dye degradation in water. Heliyon, 10(11), e31109.

30.     Musarurwa, H., and Tavengwa, N. T. (2022). Advances in the application of chitosan-based metal–organic frameworks as adsorbents for environmental remediation. Carbohydrate Polymers, 283, 119153.

31.     Mussa, Z. H., Al-Ameer, L. R., Al-Qaim, F. F., Deyab, I. F., Kamyab, H., and Chelliapan, S. (2023). A comprehensive review on adsorption of methylene blue dye using leaf waste as a biosorbent: Isotherm adsorption, kinetics, and thermodynamics studies. Environmental Monitoring and Assessment, 195(8), 1–36.

32.     Narsan, V. O., Setiawan, D. A., Rukmana, A., Dewi, R. R., Anjarwati, S., and Suhendri, R. (2023). Water quality status of Way Batanghari River, Metro City, Lampung Province based on water fit for consumption parameters. Jurnal Kesehatan Lingkungan, 15(3), 152–160.

33.     Nurika, G., Indrayani, R., Syamila, A. I., and Adi, D. I. (2022). Management of pesticide contamination in the environment and agricultural products: A literature review. Jurnal Kesehatan Lingkungan, 14(4), 265–281.

34.     Pourjavadi, A., Ghasemzadeh, H., and Hosseinzadeh, H. (2004). Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on κ-carrageenan and sodium alginate grafted with polyacrylamide. e-Polymers, Article 027.

35.     Radoor, S., Kassahun, S. K., and Kim, H. (2024). Selective adsorption of cationic dye by κ-carrageenan–potato starch biohydrogel: Kinetics, isotherm, and thermodynamic studies. International Journal of Biological Macromolecules, 281, 136377.

36.     Rahmani, Z., Ghaemy, M., and Olad, A. (2022). Removal of heavy metals from polluted water using magnetic adsorbent based on κ-carrageenan and N-doped carbon dots. Hydrometallurgy, 213, 105915.

37.     Rajni, Taruna, Udayasri, A., Raghav, N., Bendi, A., and Tomar, R. (2025). Revolutionizing wastewater treatment: Polymeric metal oxide nanocomposites for effective dye and heavy metal removal. Chemical Engineering Journal, 511, 161694.

38.     Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., and Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815.

39.     Saxena, M., Sharma, N., and Saxena, R. (2020). Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces and Interfaces, 21, 100639.

40.     Sharma, G., Khosla, A., Kumar, A., Kaushal, N., Sharma, S., Naushad, M., Vo, D. V. N., Iqbal, J., and Stadler, F. J. (2022). A comprehensive review on the removal of noxious pollutants using carrageenan-based advanced adsorbents. Chemosphere, 289, 133100.

41.     Shelke, B. N., Jopale, M. K., and Kategaonkar, A. H. (2022). Exploration of biomass waste as low-cost adsorbents for removal of methylene blue dye: A review. Journal of the Indian Chemical Society, 99(7), 100530.

42.     Soares, S. F., Nogueira, J., Trindade, T., and Daniel-da-Silva, A. L. (2022). Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan. Journal of Nanostructure in Chemistry, 13(2), 283–302.

43.     Ulu, A., Alpaslan, M., Gultek, A., and Ates, B. (2022). Eco-friendly chitosan/κ-carrageenan membranes reinforced with activated bentonite for adsorption of methylene blue. Materials Chemistry and Physics, 278, 125611.

44.     Wibiyan, S., Royani, I., Ahmad, N., and Lesbani, A. (2024). Assessing the efficiency, selectivity, and reusability of ZnAl-layered double hydroxide and Eucheuma cottonii composite in removing anionic dyes from wastewater. Inorganic Chemistry Communications, 158, 113347.

45.     Yadav, S., Ibrar, I., Altaee, A., Samal, A. K., and Zhou, J. (2022). Surface modification of nanofiltration membrane with κ-carrageenan/graphene oxide for leachate wastewater treatment. Journal of Membrane Science, 659, 120776.

46.     Yu, J., Tian, S., Yao, A., Hu, H., Lan, J., Yang, L., Du, X., and Lin, S. (2024). Compressible polydopamine-modified pomelo peel powder/poly(ethyleneimine)/κ-carrageenan aerogel with pH-tunable charge for selective removal of anionic and cationic dyes. Carbohydrate Polymers, 323, 121377.

47.     Zhu, Y., Ma, L., Wang, L., Li, X., Yang, Z., Yuan, M., Li, W., Ma, X., Gao, Y., Xiong, H., Chen, M., Wang, Y., and Xiao, Y. (2024). Adsorption of cationic dyes in wastewater with magnetic κ-carrageenan nanoparticles. Process Safety and Environmental Protection, 189, 177–187.