Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1633
Review
Article
Recent
advances in functionalized chitosan for water purification: From adsorption to
antifouling membrane coating
Nur
Aida Fatimah Mashri1, Putri Amirah Solehin Sulizi1, Nur
Hidayah Azeman2, Nurul Auni Zainal Abidin3, Nadhratun
Naiim Mobarak1*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor,Malaysia
2Institute of Microengineering and Nanoelectronics, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3School
of Chemistry and Environment, Faculty of Applied Science, Universiti Teknologi
MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah,
Negeri Sembilan, Malaysia
*Corresponding
Author: nadhratunnaiim@ukm.edu.my
Received: 26 July 2025;
Revised: 18 October 2025; Accepted: 1 November 2025; Published: 28 December
2025
Abstract
Chitosan,
a biodegradable and renewable biopolymer, has drawn more attention recently for
its potential use in water purification. However, the limited solubility at
neutral pH, low mechanical stability and poor antifouling resistance of
pristine chitosan limit its direct use. Recent studies have explored various
chemical and physical modifications of chitosan to enhance its adsorption
performance in water purification applications. In addition, the dip-coating of
chitosan onto ceramic membranes has also been investigated to improve their
antifouling performance. This review provides an updated overview of recent
advancements in the use of functionalized chitosan for water purification,
emphasizing the structure–property relationships that govern pollutant removal
and fouling resistance. Looking ahead, future research should focus on
enhancing the long-term stability of chitosan coatings, developing scalable and
cost-effective synthesis routes, and establishing greener modification
strategies. Furthermore, exploring multifunctional and hybrid chitosan-based
materials, integrating computational modelling with experimental studies, and
assessing real-world performance in complex water matrices will open promising
directions for advancing sustainable water treatment technologies.
Keywords: functionalized
chitosan, antifouling membranes, water purification, surface modification,
adsorption, ceramic membranes
References
1.
Crini, G., Lichtfouse, E., Wilson, L.
D., and Morin-Crini, N. (2019). Conventional and non-conventional adsorbents
for wastewater treatment. Environmental Chemistry Letters, 17(1),
195–213.
2.
Riegel, M., Haist-Gulde, B., and
Sacher, F. (2023). Sorptive removal of short-chain perfluoroalkyl substances
(PFAS) during drinking water treatment using activated carbon and anion
exchanger. Environmental Sciences Europe, 35(1), 12.
3.
Yaqub, M., Nguyen, M. N., and Lee, W.
(2022). Treating reverse osmosis concentrate to address scaling and fouling
problems in zero-liquid discharge systems: A scientometric review of global
trends. Science of The Total Environment, 844, 157081.
4.
Latańska, I., Rosiak, P., Paul,
P., Sujka, W., and Kolesińska, B. (2021). Modulating the physicochemical
properties of chitin and chitosan as a method of obtaining new biological
properties of biodegradable materials. In Chitin and Chitosan -
Physicochemical Properties and Industrial Applications. IntechOpen.
5.
Patel, A. K. (2015). Chitosan:
Emergence as potent candidate for green adhesive market. Biochemical
Engineering Journal, 102, 74–81.
6.
Pradines, B., Bories, C., Vauthier, C.,
Ponchel, G., Loiseau, P. M., and Bouchemal, K. (2015). Drug-free
chitosan coated poly(isobutylcyanoacrylate) nanoparticles are active against
trichomonas vaginalis and non-toxic towards pig Vaginal mucosa. Pharmaceutical
Research, 32(4), 1229–1236.
7.
Bradić, B., Bajec, D., Pohar,
A., Novak, U., and Likozar, B. (2018). A reaction–diffusion kinetic model for
the heterogeneous N-deacetylation step in chitin material conversion to
chitosan in catalytic alkaline solutions. Reaction Chemistry and Engineering,
3(6), 920–929.
8.
Benettayeb, A., Seihoub, F. Z., Pal,
P., Ghosh, S., Usman, M., Chia, C. H., Usman, M., and Sillanpää, M. (2023).
Chitosan nanoparticles as potential nano-sorbent for removal of toxic
environmental pollutants. Nanomaterials, 13(3), 447.
9.
Kyzas, G., and Bikiaris, D. (2015).
Recent modifications of chitosan for adsorption applications: A critical and
systematic review. Marine Drugs, 13(1), 312–337.
10.
Aranaz, I., Alcántara, A. R., Civera,
M. C., Arias, C., Elorza, B., Caballero, A. H., and Acosta, N. (2021).
Chitosan: An overview of its properties and applications. Polymers,
13(19), 3256.
11.
Wu, Q.-X., Lin, D.-Q., and Yao, S.-J.
(2014). Design of chitosan and its water soluble derivatives-based drug
carriers with polyelectrolyte complexes. Marine Drugs, 12(12),
6236–6253.
12.
Ahmed, M. J., Hameed, B. H., and
Hummadi, E. H. (2020). Review on recent progress in
chitosan/chitin-carbonaceous material composites for the adsorption of water
pollutants. Carbohydrate Polymers, 247, 116690.
13.
Hsu, C.-Y., Ajaj, Y., Mahmoud, Z. H.,
Kamil Ghadir, G., Khalid Alani, Z., Hussein, M. M., Abed Hussein, S., Morad
Karim, M., Al-khalidi, A., Abbas, J. K., Hussein Kareem, A., and kianfar, E.
(2024). Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A
review study. Results in Chemistry, 7, 101332.
14.
M. Fathil, M. A., Faris Taufeq, F.
Y., Suleman Ismail Abdalla, S., and Katas, H. (2022). Roles of chitosan in
synthesis, antibacterial and anti-biofilm properties of bionano silver and
gold. RSC Advances, 12(30), 19297–19312.
15.
Ren, W., Tang, Q., Cao, H., Wang, L.,
and Zheng, X. (2023). Biological preparation of chitosan-loaded silver
nanoparticles: Study of methylene blue adsorption as well as antibacterial
properties under light. ACS Omega, 8(25), 22998–23007.
16.
Sharma, A. R., Lee, Y.-H., Bat-Ulzii,
A., Bhattacharya, M., Chakraborty, C., and Lee, S.-S. (2022). Recent advances
of metal-based nanoparticles in nucleic acid delivery for therapeutic
applications. Journal of Nanobiotechnology, 20(1), 501.
17.
Xu, W., Yang, T., Liu, S., Du, L., Chen,
Q., Li, X., Dong, J., Zhang, Z., Lu, S., Gong, Y., Zhou, L., Liu, Y., and Tan,
X. (2022). Insights
into the Synthesis, types and application of iron Nanoparticles: The overlooked
significance of environmental effects. Environment International, 158,
106980.
18.
Collado-González, M., Montalbán, M.
G., Peña-García, J., Pérez-Sánchez, H., Víllora, G., and Díaz Baños, F. G.
(2017). Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydrate
Polymers, 161, 63–70.
19.
Franconetti, A., Carnerero, J. M.,
Prado-Gotor, R., Cabrera-Escribano, F., and Jaime, C. (2019). Chitosan as a
capping agent: Insights on the stabilization of gold nanoparticles. Carbohydrate
Polymers, 207, 806–814.
20.
Wu, S., Li, K., Dai, X., Zhang, Z.,
Ding, F., and Li, S. (2020). An ultrasensitive electrochemical platform based
on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing
cadmium (II) ions. Microchemical Journal, 155, 104710.
21.
Ghulam, A. N., dos Santos, O. A. L.,
Hazeem, L., Pizzorno Backx, B., Bououdina, M., and Bellucci, S. (2022).
Graphene oxide (GO) materials—applications and toxicity on living organisms and
environment. Journal of Functional Biomaterials, 13(2), 77.
22.
Rana, K., Kaur, H., Singh, N.,
Sithole, T., and Siwal, S. S. (2024). Graphene-based materials: Unravelling its
impact in wastewater treatment for sustainable environments. Next Materials,
3, 100107.
23.
Lokman, N. F., Bakar, A. A. A., Suja,
F., Abdullah, H., Rahman, W. B. W. A., Huang, N.-M., and Yaacob, M. H. (2014).
Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin
films toward Pb (II) ions. Sensors and Actuators B: Chemical, 195,
459–466.
24.
Alves, D. C. da S., Healy, B., Yu,
T., and Breslin, C. B. (2021). Graphene-based materials immobilized within
chitosan: Applications as adsorbents for the removal of aquatic pollutants. Materials,
14(13), 3655.
25.
Lokman, N. F., Azeman, N. H., Suja,
F., Arsad, N., and Bakar, A. A. A. (2019). Sensitivity enhancement of Pb(II) ion
detection in rivers using SPR-based Ag metallic layer coated with
chitosan–graphene oxide nanocomposite. Sensors, 19(23), 5159.
26.
Lesiak, A., Drzozga, K., Cabaj, J.,
Bański, M., Malecha, K., and Podhorodecki, A. (2019). optical sensors
based on II-VI quantum dots. Nanomaterials, 9(2), 192.
27.
Şahin, S., Ergüder, Ö., Trabzon,
L., and Ünlü, C. (2023). Quantum dots for sensing applications. In Fundamentals
of Sensor Technology (pp. 443–473). Elsevier.
28.
Tshangana, C. S., Muleja, A. A.,
Kuvarega, A. T., Malefetse, T. J., and Mamba, B. B. (2021). The applications of
graphene oxide quantum dots in the removal of emerging pollutants in water: An
overview. Journal of Water Process Engineering, 43, 102249.
29.
Mahmoud, M. E., Amira, M. F.,
Daniele, S., El Nemr, A., Abouelanwar, M. E., and Morcos, B. M. (2023).
Recovery of silver and gold quantum dots from wastewater via coagulative
adsorption onto CoFe2O4 based magnetic covalent-organic
framework to generate efficient nanocatalysts for degradation of doxorubicin
drug. Journal of Water Process Engineering, 51, 103409.
30.
Marpu, S. B., and Benton, E. N.
(2018). Shining light on chitosan: A review on the usage of chitosan for
photonics and nanomaterials research. International Journal of Molecular
Sciences, 19(6), 1795.
31.
Nie, Q., Tan, W. B., and Zhang, Y.
(2006). Synthesis and characterization of monodisperse chitosan nanoparticles
with embedded quantum dots. Nanotechnology, 17(1), 140–144.
32.
Yuan, Q., Hein, S., and Misra, R. D.
K. (2010). New generation of chitosan-encapsulated ZnO quantum dots loaded with
drug: Synthesis, characterization and in vitro drug delivery response. Acta
Biomaterialia, 6(7), 2732–2739.
33.
Anas, N. A. A., Fen, Y. W., Omar, N.
A. S., Ramdzan, N. S. M., Daniyal, W. M. E. M. M., Saleviter, S., and Zainudin,
A. A. (2019). Optical properties of chitosan/hydroxyl-functionalized graphene
quantum dots thin film for potential optical detection of ferric (III) ion. Optics
and Laser Technology, 120, 105724.
34.
Ramdzan, N. S. M., Fen, Y. W., Omar,
N. A. S., Anas, N. A. A., Daniyal, W. M. E. M. M., Saleviter, S., and Zainudin,
A. A. (2019). Optical and surface plasmon resonance sensing properties for
chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik,
178, 802–812.
35.
Johns, J., and Rao, V. (2011).
Adsorption of methylene blue onto natural rubber/chitosan blends. International
Journal of Polymeric Materials, 60(10), 766–775.
36.
Markovic, G., and Visakh, P. M.
(2017). Polymer blends. In Recent Developments in Polymer Macro, Micro and
Nano Blends (pp. 1–15). Elsevier.
37.
Elhefian, E. A., El-Hefian, E. A.,
Nasef, M. M., and Yahaya, A. H. (2014). Chitosan-based polymer blends: current
status and applications. Journal Chemical Society Pakistan, 36, 1.
38.
Albadarin, A. B., Collins, M. N.,
Naushad, M., Shirazian, S., Walker, G., and Mangwandi, C. (2017). Activated
lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical
Engineering Journal, 307, 264–272.
39.
Rao, V., and Johns, J. (2008).
Mechanical properties of thermoplastic elastomeric blends of chitosan and
natural rubber latex. Journal of Applied Polymer Science, 107(4),
2217–2223.
40.
Udoetok, I. A., Wilson, L. D., and
Headley, J. V. (2016). Self-Assembled and Cross-linked animal and plant-based
polysaccharides: Chitosan–cellulose composites and their anion uptake
properties. ACS Applied Materials and Interfaces, 8(48), 33197–33209.
41.
Azmi, N. A., and Low, S. C. (2017).
Investigating film structure of membrane-based colorimetric sensor for heavy
metal detection. Journal of Water Process Engineering, 15, 37–42.
42.
Roshidi, M. D. A., Fen, Y. W.,
Daniyal, W. M. E. M. M., Omar, N. A. S., and Zulholinda, M. (2019). Structural
and optical properties of chitosan–poly(amidoamine) dendrimer composite thin
film for potential sensing Pb2+ using an optical spectroscopy. Optik,
185, 351–358.
43.
Wang, J., and Zhuang, S. (2017).
Removal of various pollutants from water and wastewater by modified chitosan
adsorbents. Critical Reviews in Environmental Science and Technology, 47(23),
2331–2386.
44.
Syeda, S. E. Z., Khan, M. S., and
Skwierawska, A. M. (2024). Chitosan-based modalities with multifunctional
attributes for adsorptive mitigation of hazardous metal contaminants from
wastewater. Desalination and Water Treatment, 320, 100679.
45.
Bai, R., Zhang, X., Yong, H., Wang,
X., Liu, Y., and Liu, J. (2019). Development and characterization of
antioxidant active packaging and intelligent Al3+-sensing films
based on carboxymethyl chitosan and quercetin. International Journal of
Biological Macromolecules, 126, 1074–1084.
46.
Mobarak, N. N., Jantan, F. N.,
Dzulkurnain, N. A., Ahmad, A., and Abdullah, M. P. (2018). Kesan garam litium
nitrat terhadap sifat elektrokimia karboksimetil kitosan. Sains Malaysiana,
47(9), 2091–2098.
47.
Mourya, V. K., Inamdara, N.,
and Ashutosh T. N. (2010). Carboxymethyl chitosan and its applications.
Advanced Materials Letters, 1(1), 11–33.
48.
Chen, S., Ding, R., Ma, X., Xue, L.,
Lin, X., Fan, X., and Luo, Z. (2016). Preparation of highly dispersed reduced
graphene oxide modified with carboxymethyl chitosan for highly sensitive
detection of trace Cu(II) in water. Polymers, 8(4), 78.
49.
Liu, Z., Liu, H., Wang, L., and Su,
X. (2016). A label-free fluorescence biosensor for highly sensitive detection
of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Analytica
Chimica Acta, 932, 88–97.
50.
Ma, Q., Lin, Z.-H., Yang, N., Li, Y.,
and Su, X.-G. (2014). A novel carboxymethyl chitosan–quantum dot-based
intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta
Biomaterialia, 10(2), 868–874.
51.
Song, Y., Li, Y., Liu, Z., Liu, L.,
Wang, X., Su, X., and Ma, Q. (2014). A novel ultrasensitive carboxymethyl
chitosan-quantum dot-based fluorescence “turn on–off” nanosensor for lysozyme
detection. Biosensors and Bioelectronics, 61, 9–13.
52.
Wan Ngah, W. S., and Liang, K. H.
(1999). Adsorption of gold(III) ions onto chitosan and n -carboxymethyl
chitosan: Equilibrium studies. Industrial and Engineering Chemistry
Research, 38(4), 1411–1414.
53.
Kyzas, G. Z., Siafaka, P. I.,
Pavlidou, E. G., Chrissafis, K. J., and Bikiaris, D. N. (2015). Synthesis and
adsorption application of succinyl-grafted chitosan for the simultaneous
removal of zinc and cationic dye from binary hazardous mixtures. Chemical
Engineering Journal, 259, 438–448.
54.
Sun, S., and Wang, A. (2006).
Adsorption properties of N-succinyl-chitosan and cross-linked
N-succinyl-chitosan resin with Pb(II) as template ions. Separation and
Purification Technology, 51(3), 409–415.
55.
Sun, S., Wang, Q., and Wang, A.
(2007). Adsorption properties of Cu(II) ions onto N-succinyl-chitosan and
crosslinked N-succinyl-chitosan template resin. Biochemical Engineering
Journal, 36(2), 131–138.
56.
Li, Q., Zhao, Y., Wang, L., and
Aiqin, W. (2011). Adsorption characteristics of methylene blue onto the
N-succinyl-chitosan-g-polyacrylamide/attapulgite composite. Korean Journal
of Chemical Engineering, 28(8), 1658–1664.
57.
Olanipekun, E. O., Ayodele, O.,
Olatunde, O. C., and Olusegun, S. J. (2021). Comparative studies of chitosan
and carboxymethyl chitosan doped with nickel and copper: Characterization and
antibacterial potential. International Journal of Biological Macromolecules,
183, 1971–1977.
58.
Huang, X.-Y., Bu, H.-T., Jiang,
G.-B., and Zeng, M.-H. (2011). Cross-linked succinyl chitosan as an adsorbent
for the removal of Methylene Blue from aqueous solution. International
Journal of Biological Macromolecules, 49(4), 643–651.
59.
Ramos, V. M., Rodríguez, M. S.,
Agulló, E., Rodríguez, N. M., and Heras, A. (2002). Chitosan with phosphonic
and carboxylic group: New multidentate ligands. International Journal of
Polymeric Materials, 51(8), 711–720.
60.
Ramos, V. M., Rodrı́guez,
N. M., Dı́az, M. F., Rodrı́guez, M. S., Heras, A., and
Agulló, E. (2003). N-methylene phosphonic chitosan. Effect of preparation
methods on its properties. Carbohydrate Polymers, 52(1), 39–46.
61.
Heras, A. (2001). N-methylene
phosphonic chitosan: A novel soluble derivative. Carbohydrate Polymers, 44(1),
1–8.
62.
Yilmaz Atay, H. (2020). Antibacterial
activity of chitosan-based systems. Functional Chitosan, 2020, 457.
63.
Abou-Zeid, N. Y., Waly, A. I.,
Kandile, N. G., Rushdy, A. A., El-Sheikh, M. A., and Ibrahim, H. M. (2011).
Preparation, characterization and antibacterial properties of
cyanoethylchitosan/ cellulose acetate polymer blended films. Carbohydrate
Polymers, 84(1), 223–230.
64.
Cele, Z. E. D., Somboro, A. M.,
Amoako, D. G., Ndlandla, L. F., and Balogun, M. O. (2020). Fluorinated quaternary
chitosan derivatives: Synthesis, characterization, antibacterial activity, and
killing kinetics. ACS Omega, 5(46), 29657.
65.
Farag, R., and Mohamed, R. (2012).
Synthesis and characterization of carboxymethyl chitosan nanogels for swelling
studies and antimicrobial activity. Molecules, 18(1), 190–203.
66.
Niu, X., Zhu, L., Xi, L., Guo, L., and
Wang, H. (2020). An antimicrobial agent prepared by N-succinyl chitosan
immobilized lysozyme and its application in strawberry preservation. Food
Control, 108, 106829.
67.
Mesas, F. A., Terrile, M. C.,
Silveyra, M. X., Zuñiga, A., Rodriguez, M. S., Casalongué, C. A., and Mendieta,
J. R. (2021). The water-soluble chitosan derivative, n-methylene phosphonic
chitosan, is an effective fungicide against the phytopathogen Fusarium
eumartii. The Plant Pathology Journal, 37(6), 533–542.
68.
Bat-Amgalan, M., Miyamoto, N., Kano,
N., Yunden, G., and Kim, H. J. (2022). Preparation and characterization of
low-cost ceramic membrane coated with chitosan: Application to the ultrafine
filtration of Cr(VI). Membranes, 12(9), 835.
69.
He, Z., Lyu, Z., Gu, Q., Zhang, L., and
Wang, J. (2019). Ceramic-based membranes for water and wastewater treatment. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 578,
123513.
70.
Cui, Q., Shang, Y., Fei, Z., Tu, T., and
Yan, S. (2022). Hydrophobic-hydrophilic janus ceramic membrane for enhancing
the waste heat recovery from the stripped gas in the carbon capture process. ACS
Sustainable Chemistry and Engineering, 10(12), 3817–3828.
71.
Jiang, S., Li, Y., and Ladewig, B. P.
(2017). A review of reverse osmosis membrane fouling and control strategies. Science
of the Total Environment, 595, 567–583.
72.
Li, C., Sun, W., Lu, Z., Ao, X., and
Li, S. (2020). Ceramic nanocomposite membranes and membrane fouling: A review. Water
Research, 175, 115674.
73.
Apriyanti, E., Susanto, H., and
Widiasa, I. N. (2023). Chitosan-modified fly-ash/kaolin ceramic membrane for
enhancing FOG-water separation performance. Reaktor, 1(1), 26–36.
74.
Gul, A., Hruza, J., and Yalcinkaya,
F. (2021). Fouling and chemical cleaning of microfiltration membranes: A mini-review.
Polymers, 13(6), 846.
75.
Ewis, D., Ismail, N. A., Hafiz, M.
A., Benamor, A., and Hawari, A. H. (2021). Nanoparticles functionalized ceramic
membranes: fabrication, surface modification, and performance. Environmental
Science and Pollution Research International, 28(10), 12256–12281.
76.
Xia, C. (2000). Preparation of yttria
stabilized zirconia membranes on porous substrates by a dip-coating process. Solid
State Ionics, 133(3–4), 287–294.
77.
Chen, M., Heijman, S. G. J., and
Rietveld, L. C. (2021). State-of-the-art ceramic membranes for oily wastewater
treatment: Modification and application. Membranes, 11(11), 888.
78.
Changmai, M., and Purkait, M. K.
(2018). Detailed study of temperature-responsive composite membranes prepared
by dip coating poly (2-ethyl-2-oxazoline) onto a ceramic membrane. Ceramics
International, 44(1), 959–968.
79.
Cai, Y.-H., Yang, X. J., and Schäfer,
A. I. (2020). Removal of naturally occurring strontium by
nanofiltration/reverse osmosis from groundwater. Membranes, 10(11), 321.
80.
Ezaier, Y., Hader, A., Latif, A.,
Khan, M. E., Ali, W., Ali, S. K., Khan, A. U., Bashiri, A. H., Zakri, W.,
Yusuf, M., Rajamohan, N., and Ibrahim, H. (2024). Solving the fouling
mechanisms in composite membranes for water purification: An advance approach. Environmental
Research, 250, 118487.
81.
Liu, X.-Y., Chen, Y.-B., Fu, J., Zhu,
X., Lv, L.-Y., Sun, L., Zhang, G.-M., and Ren, Z.-J. (2024). A review of
combined fouling on high-pressure membranes in municipal wastewater reuse:
Behaviors, mechanisms, and pretreatment mitigation strategies. Chemical
Engineering Journal, 485, 150135.
82.
Yue, Y., Hou, K., Chen, J., Cheng,
W., Wu, Q., Han, J., and Jiang, J. (2022). Ag/AgBr/AgVO3 photocatalyst-embedded
polyacrylonitrile/poly amide/chitosan nanofiltration membrane for integrated
filtration and degradation of RhB. ACS Applied Materials and Interfaces,
14(21), 24708–24719.
83.
Bellich, B., D’Agostino, I.,
Semeraro, S., Gamini, A., and Cesàro, A. (2016). “The good, the bad and the
ugly” of chitosans. Marine Drugs, 14(5), 99.
84.
Sagheer, F. A. Al, Al-Sughayer, M.
A., Muslim, S., and Elsabee, M. Z. (2009). Extraction and characterization of
chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate
Polymers, 77(2), 410–419.
85.
Mironenko, A., Modin, E., Sergeev,
A., Voznesenskiy, S., and Bratskaya, S. (2014). Fabrication and optical
properties of chitosan/Ag nanoparticles thin film composites. Chemical
Engineering Journal, 244, 457–463.
86.
Omar, N., Fen, Y., Saleviter, S.,
Daniyal, W., Anas, N., Ramdzan, N., and Roshidi, M. (2019). Development of a
graphene-based surface plasmon resonance optical sensor chip for potential
biomedical application. Materials, 12(12),1928.