Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1633

 

Review Article

 

Recent advances in functionalized chitosan for water purification: From adsorption to antifouling membrane coating

 

Nur Aida Fatimah Mashri1, Putri Amirah Solehin Sulizi1, Nur Hidayah Azeman2, Nurul Auni Zainal Abidin3, Nadhratun Naiim Mobarak1*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor,Malaysia
2Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3School of Chemistry and Environment, Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding Author: nadhratunnaiim@ukm.edu.my

 

Received: 26 July 2025; Revised: 18 October 2025; Accepted: 1 November 2025; Published: 28 December 2025

 

Abstract

Chitosan, a biodegradable and renewable biopolymer, has drawn more attention recently for its potential use in water purification. However, the limited solubility at neutral pH, low mechanical stability and poor antifouling resistance of pristine chitosan limit its direct use. Recent studies have explored various chemical and physical modifications of chitosan to enhance its adsorption performance in water purification applications. In addition, the dip-coating of chitosan onto ceramic membranes has also been investigated to improve their antifouling performance. This review provides an updated overview of recent advancements in the use of functionalized chitosan for water purification, emphasizing the structure–property relationships that govern pollutant removal and fouling resistance. Looking ahead, future research should focus on enhancing the long-term stability of chitosan coatings, developing scalable and cost-effective synthesis routes, and establishing greener modification strategies. Furthermore, exploring multifunctional and hybrid chitosan-based materials, integrating computational modelling with experimental studies, and assessing real-world performance in complex water matrices will open promising directions for advancing sustainable water treatment technologies.

 

Keywords: functionalized chitosan, antifouling membranes, water purification, surface modification, adsorption, ceramic membranes



References

1.        Crini, G., Lichtfouse, E., Wilson, L. D., and Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17(1), 195–213.

2.        Riegel, M., Haist-Gulde, B., and Sacher, F. (2023). Sorptive removal of short-chain perfluoroalkyl substances (PFAS) during drinking water treatment using activated carbon and anion exchanger. Environmental Sciences Europe, 35(1), 12.

3.        Yaqub, M., Nguyen, M. N., and Lee, W. (2022). Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends. Science of The Total Environment, 844, 157081.

4.        Latańska, I., Rosiak, P., Paul, P., Sujka, W., and Kolesińska, B. (2021). Modulating the physicochemical properties of chitin and chitosan as a method of obtaining new biological properties of biodegradable materials. In Chitin and Chitosan - Physicochemical Properties and Industrial Applications. IntechOpen.

5.        Patel, A. K. (2015). Chitosan: Emergence as potent candidate for green adhesive market. Biochemical Engineering Journal, 102, 74–81.

6.        Pradines, B., Bories, C., Vauthier, C., Ponchel, G., Loiseau, P. M., and Bouchemal, K. (2015). Drug-free chitosan coated poly(isobutylcyanoacrylate) nanoparticles are active against trichomonas vaginalis and non-toxic towards pig Vaginal mucosa. Pharmaceutical Research, 32(4), 1229–1236.

7.        Bradić, B., Bajec, D., Pohar, A., Novak, U., and Likozar, B. (2018). A reaction–diffusion kinetic model for the heterogeneous N-deacetylation step in chitin material conversion to chitosan in catalytic alkaline solutions. Reaction Chemistry and Engineering, 3(6), 920–929.

8.        Benettayeb, A., Seihoub, F. Z., Pal, P., Ghosh, S., Usman, M., Chia, C. H., Usman, M., and Sillanpää, M. (2023). Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials, 13(3), 447.

9.        Kyzas, G., and Bikiaris, D. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13(1), 312–337.

10.     Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Caballero, A. H., and Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256.

11.     Wu, Q.-X., Lin, D.-Q., and Yao, S.-J. (2014). Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 12(12), 6236–6253.

12.     Ahmed, M. J., Hameed, B. H., and Hummadi, E. H. (2020). Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers, 247, 116690.

13.     Hsu, C.-Y., Ajaj, Y., Mahmoud, Z. H., Kamil Ghadir, G., Khalid Alani, Z., Hussein, M. M., Abed Hussein, S., Morad Karim, M., Al-khalidi, A., Abbas, J. K., Hussein Kareem, A., and kianfar, E. (2024). Adsorption of heavy metal ions use chitosan/graphene nanocomposites: A review study. Results in Chemistry, 7, 101332.

14.     M. Fathil, M. A., Faris Taufeq, F. Y., Suleman Ismail Abdalla, S., and Katas, H. (2022). Roles of chitosan in synthesis, antibacterial and anti-biofilm properties of bionano silver and gold. RSC Advances, 12(30), 19297–19312.

15.     Ren, W., Tang, Q., Cao, H., Wang, L., and Zheng, X. (2023). Biological preparation of chitosan-loaded silver nanoparticles: Study of methylene blue adsorption as well as antibacterial properties under light. ACS Omega, 8(25), 22998–23007.

16.     Sharma, A. R., Lee, Y.-H., Bat-Ulzii, A., Bhattacharya, M., Chakraborty, C., and Lee, S.-S. (2022). Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. Journal of Nanobiotechnology, 20(1), 501.

17.     Xu, W., Yang, T., Liu, S., Du, L., Chen, Q., Li, X., Dong, J., Zhang, Z., Lu, S., Gong, Y., Zhou, L., Liu, Y., and Tan, X. (2022). Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environment International, 158, 106980.

18.     Collado-González, M., Montalbán, M. G., Peña-García, J., Pérez-Sánchez, H., Víllora, G., and Díaz Baños, F. G. (2017). Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydrate Polymers, 161, 63–70.

19.     Franconetti, A., Carnerero, J. M., Prado-Gotor, R., Cabrera-Escribano, F., and Jaime, C. (2019). Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles. Carbohydrate Polymers, 207, 806–814.

20.     Wu, S., Li, K., Dai, X., Zhang, Z., Ding, F., and Li, S. (2020). An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions. Microchemical Journal, 155, 104710.

21.     Ghulam, A. N., dos Santos, O. A. L., Hazeem, L., Pizzorno Backx, B., Bououdina, M., and Bellucci, S. (2022). Graphene oxide (GO) materials—applications and toxicity on living organisms and environment. Journal of Functional Biomaterials, 13(2), 77.

22.     Rana, K., Kaur, H., Singh, N., Sithole, T., and Siwal, S. S. (2024). Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Materials, 3, 100107.

23.     Lokman, N. F., Bakar, A. A. A., Suja, F., Abdullah, H., Rahman, W. B. W. A., Huang, N.-M., and Yaacob, M. H. (2014). Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions. Sensors and Actuators B: Chemical, 195, 459–466.

24.     Alves, D. C. da S., Healy, B., Yu, T., and Breslin, C. B. (2021). Graphene-based materials immobilized within chitosan: Applications as adsorbents for the removal of aquatic pollutants. Materials, 14(13), 3655.

25.     Lokman, N. F., Azeman, N. H., Suja, F., Arsad, N., and Bakar, A. A. A. (2019). Sensitivity enhancement of Pb(II) ion detection in rivers using SPR-based Ag metallic layer coated with chitosan–graphene oxide nanocomposite. Sensors, 19(23), 5159.

26.     Lesiak, A., Drzozga, K., Cabaj, J., Bański, M., Malecha, K., and Podhorodecki, A. (2019). optical sensors based on II-VI quantum dots. Nanomaterials, 9(2), 192.

27.     Şahin, S., Ergüder, Ö., Trabzon, L., and Ünlü, C. (2023). Quantum dots for sensing applications. In Fundamentals of Sensor Technology (pp. 443–473). Elsevier.

28.     Tshangana, C. S., Muleja, A. A., Kuvarega, A. T., Malefetse, T. J., and Mamba, B. B. (2021). The applications of graphene oxide quantum dots in the removal of emerging pollutants in water: An overview. Journal of Water Process Engineering, 43, 102249.

29.     Mahmoud, M. E., Amira, M. F., Daniele, S., El Nemr, A., Abouelanwar, M. E., and Morcos, B. M. (2023). Recovery of silver and gold quantum dots from wastewater via coagulative adsorption onto CoFe2O4 based magnetic covalent-organic framework to generate efficient nanocatalysts for degradation of doxorubicin drug. Journal of Water Process Engineering, 51, 103409.

30.     Marpu, S. B., and Benton, E. N. (2018). Shining light on chitosan: A review on the usage of chitosan for photonics and nanomaterials research. International Journal of Molecular Sciences, 19(6), 1795.

31.     Nie, Q., Tan, W. B., and Zhang, Y. (2006). Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots. Nanotechnology, 17(1), 140–144.

32.     Yuan, Q., Hein, S., and Misra, R. D. K. (2010). New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomaterialia, 6(7), 2732–2739.

33.     Anas, N. A. A., Fen, Y. W., Omar, N. A. S., Ramdzan, N. S. M., Daniyal, W. M. E. M. M., Saleviter, S., and Zainudin, A. A. (2019). Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Optics and Laser Technology, 120, 105724.

34.     Ramdzan, N. S. M., Fen, Y. W., Omar, N. A. S., Anas, N. A. A., Daniyal, W. M. E. M. M., Saleviter, S., and Zainudin, A. A. (2019). Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik, 178, 802–812.

35.     Johns, J., and Rao, V. (2011). Adsorption of methylene blue onto natural rubber/chitosan blends. International Journal of Polymeric Materials, 60(10), 766–775.

36.     Markovic, G., and Visakh, P. M. (2017). Polymer blends. In Recent Developments in Polymer Macro, Micro and Nano Blends (pp. 1–15). Elsevier.

37.     Elhefian, E. A., El-Hefian, E. A., Nasef, M. M., and Yahaya, A. H. (2014). Chitosan-based polymer blends: current status and applications. Journal Chemical Society Pakistan, 36, 1.

38.     Albadarin, A. B., Collins, M. N., Naushad, M., Shirazian, S., Walker, G., and Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307, 264–272.

39.     Rao, V., and Johns, J. (2008). Mechanical properties of thermoplastic elastomeric blends of chitosan and natural rubber latex. Journal of Applied Polymer Science, 107(4), 2217–2223.

40.     Udoetok, I. A., Wilson, L. D., and Headley, J. V. (2016). Self-Assembled and Cross-linked animal and plant-based polysaccharides: Chitosan–cellulose composites and their anion uptake properties. ACS Applied Materials and Interfaces, 8(48), 33197–33209.

41.     Azmi, N. A., and Low, S. C. (2017). Investigating film structure of membrane-based colorimetric sensor for heavy metal detection. Journal of Water Process Engineering, 15, 37–42.

42.     Roshidi, M. D. A., Fen, Y. W., Daniyal, W. M. E. M. M., Omar, N. A. S., and Zulholinda, M. (2019). Structural and optical properties of chitosan–poly(amidoamine) dendrimer composite thin film for potential sensing Pb2+ using an optical spectroscopy. Optik, 185, 351–358.

43.     Wang, J., and Zhuang, S. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Critical Reviews in Environmental Science and Technology, 47(23), 2331–2386.

44.     Syeda, S. E. Z., Khan, M. S., and Skwierawska, A. M. (2024). Chitosan-based modalities with multifunctional attributes for adsorptive mitigation of hazardous metal contaminants from wastewater. Desalination and Water Treatment, 320, 100679.

45.     Bai, R., Zhang, X., Yong, H., Wang, X., Liu, Y., and Liu, J. (2019). Development and characterization of antioxidant active packaging and intelligent Al3+-sensing films based on carboxymethyl chitosan and quercetin. International Journal of Biological Macromolecules, 126, 1074–1084.

46.     Mobarak, N. N., Jantan, F. N., Dzulkurnain, N. A., Ahmad, A., and Abdullah, M. P. (2018). Kesan garam litium nitrat terhadap sifat elektrokimia karboksimetil kitosan. Sains Malaysiana, 47(9), 2091–2098.

47.     Mourya, V. K., Inamdara, N., and Ashutosh T. N. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1(1), 11–33.

48.     Chen, S., Ding, R., Ma, X., Xue, L., Lin, X., Fan, X., and Luo, Z. (2016). Preparation of highly dispersed reduced graphene oxide modified with carboxymethyl chitosan for highly sensitive detection of trace Cu(II) in water. Polymers, 8(4), 78.

49.     Liu, Z., Liu, H., Wang, L., and Su, X. (2016). A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Analytica Chimica Acta, 932, 88–97.

50.     Ma, Q., Lin, Z.-H., Yang, N., Li, Y., and Su, X.-G. (2014). A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomaterialia, 10(2), 868–874.

51.     Song, Y., Li, Y., Liu, Z., Liu, L., Wang, X., Su, X., and Ma, Q. (2014). A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on–off” nanosensor for lysozyme detection. Biosensors and Bioelectronics, 61, 9–13.

52.     Wan Ngah, W. S., and Liang, K. H. (1999). Adsorption of gold(III) ions onto chitosan and n -carboxymethyl chitosan:  Equilibrium studies. Industrial and Engineering Chemistry Research, 38(4), 1411–1414.

53.     Kyzas, G. Z., Siafaka, P. I., Pavlidou, E. G., Chrissafis, K. J., and Bikiaris, D. N. (2015). Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chemical Engineering Journal, 259, 438–448.

54.     Sun, S., and Wang, A. (2006). Adsorption properties of N-succinyl-chitosan and cross-linked N-succinyl-chitosan resin with Pb(II) as template ions. Separation and Purification Technology, 51(3), 409–415.

55.     Sun, S., Wang, Q., and Wang, A. (2007). Adsorption properties of Cu(II) ions onto N-succinyl-chitosan and crosslinked N-succinyl-chitosan template resin. Biochemical Engineering Journal, 36(2), 131–138.

56.     Li, Q., Zhao, Y., Wang, L., and Aiqin, W. (2011). Adsorption characteristics of methylene blue onto the N-succinyl-chitosan-g-polyacrylamide/attapulgite composite. Korean Journal of Chemical Engineering, 28(8), 1658–1664.

57.     Olanipekun, E. O., Ayodele, O., Olatunde, O. C., and Olusegun, S. J. (2021). Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. International Journal of Biological Macromolecules, 183, 1971–1977.

58.     Huang, X.-Y., Bu, H.-T., Jiang, G.-B., and Zeng, M.-H. (2011). Cross-linked succinyl chitosan as an adsorbent for the removal of Methylene Blue from aqueous solution. International Journal of Biological Macromolecules, 49(4), 643–651.

59.     Ramos, V. M., Rodríguez, M. S., Agulló, E., Rodríguez, N. M., and Heras, A. (2002). Chitosan with phosphonic and carboxylic group: New multidentate ligands. International Journal of Polymeric Materials, 51(8), 711–720.

60.     Ramos, V. M., Rodrı́guez, N. M., Dı́az, M. F., Rodrı́guez, M. S., Heras, A., and Agulló, E. (2003). N-methylene phosphonic chitosan. Effect of preparation methods on its properties. Carbohydrate Polymers, 52(1), 39–46.

61.     Heras, A. (2001). N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydrate Polymers, 44(1), 1–8.

62.     Yilmaz Atay, H. (2020). Antibacterial activity of chitosan-based systems. Functional Chitosan, 2020, 457.

63.     Abou-Zeid, N. Y., Waly, A. I., Kandile, N. G., Rushdy, A. A., El-Sheikh, M. A., and Ibrahim, H. M. (2011). Preparation, characterization and antibacterial properties of cyanoethylchitosan/ cellulose acetate polymer blended films. Carbohydrate Polymers, 84(1), 223–230.

64.     Cele, Z. E. D., Somboro, A. M., Amoako, D. G., Ndlandla, L. F., and Balogun, M. O. (2020). Fluorinated quaternary chitosan derivatives: Synthesis, characterization, antibacterial activity, and killing kinetics. ACS Omega, 5(46), 29657.

65.     Farag, R., and Mohamed, R. (2012). Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules, 18(1), 190–203.

66.     Niu, X., Zhu, L., Xi, L., Guo, L., and Wang, H. (2020). An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control, 108, 106829.

67.     Mesas, F. A., Terrile, M. C., Silveyra, M. X., Zuñiga, A., Rodriguez, M. S., Casalongué, C. A., and Mendieta, J. R. (2021). The water-soluble chitosan derivative, n-methylene phosphonic chitosan, is an effective fungicide against the phytopathogen Fusarium eumartii. The Plant Pathology Journal, 37(6), 533–542.

68.     Bat-Amgalan, M., Miyamoto, N., Kano, N., Yunden, G., and Kim, H. J. (2022). Preparation and characterization of low-cost ceramic membrane coated with chitosan: Application to the ultrafine filtration of Cr(VI). Membranes, 12(9), 835.

69.     He, Z., Lyu, Z., Gu, Q., Zhang, L., and Wang, J. (2019). Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 123513.

70.     Cui, Q., Shang, Y., Fei, Z., Tu, T., and Yan, S. (2022). Hydrophobic-hydrophilic janus ceramic membrane for enhancing the waste heat recovery from the stripped gas in the carbon capture process. ACS Sustainable Chemistry and Engineering, 10(12), 3817–3828.

71.     Jiang, S., Li, Y., and Ladewig, B. P. (2017). A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 595, 567–583.

72.     Li, C., Sun, W., Lu, Z., Ao, X., and Li, S. (2020). Ceramic nanocomposite membranes and membrane fouling: A review. Water Research, 175, 115674.

73.     Apriyanti, E., Susanto, H., and Widiasa, I. N. (2023). Chitosan-modified fly-ash/kaolin ceramic membrane for enhancing FOG-water separation performance. Reaktor, 1(1), 26–36.

74.     Gul, A., Hruza, J., and Yalcinkaya, F. (2021). Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers, 13(6), 846.

75.     Ewis, D., Ismail, N. A., Hafiz, M. A., Benamor, A., and Hawari, A. H. (2021). Nanoparticles functionalized ceramic membranes: fabrication, surface modification, and performance. Environmental Science and Pollution Research International, 28(10), 12256–12281.

76.     Xia, C. (2000). Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process. Solid State Ionics, 133(3–4), 287–294.

77.     Chen, M., Heijman, S. G. J., and Rietveld, L. C. (2021). State-of-the-art ceramic membranes for oily wastewater treatment: Modification and application. Membranes, 11(11), 888.

78.     Changmai, M., and Purkait, M. K. (2018). Detailed study of temperature-responsive composite membranes prepared by dip coating poly (2-ethyl-2-oxazoline) onto a ceramic membrane. Ceramics International, 44(1), 959–968.

79.     Cai, Y.-H., Yang, X. J., and Schäfer, A. I. (2020). Removal of naturally occurring strontium by nanofiltration/reverse osmosis from groundwater. Membranes, 10(11), 321.

80.     Ezaier, Y., Hader, A., Latif, A., Khan, M. E., Ali, W., Ali, S. K., Khan, A. U., Bashiri, A. H., Zakri, W., Yusuf, M., Rajamohan, N., and Ibrahim, H. (2024). Solving the fouling mechanisms in composite membranes for water purification: An advance approach. Environmental Research, 250, 118487.

81.     Liu, X.-Y., Chen, Y.-B., Fu, J., Zhu, X., Lv, L.-Y., Sun, L., Zhang, G.-M., and Ren, Z.-J. (2024). A review of combined fouling on high-pressure membranes in municipal wastewater reuse: Behaviors, mechanisms, and pretreatment mitigation strategies. Chemical Engineering Journal, 485, 150135.

82.     Yue, Y., Hou, K., Chen, J., Cheng, W., Wu, Q., Han, J., and Jiang, J. (2022). Ag/AgBr/AgVO3 photocatalyst-embedded polyacrylonitrile/poly amide/chitosan nanofiltration membrane for integrated filtration and degradation of RhB. ACS Applied Materials and Interfaces, 14(21), 24708–24719.

83.     Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A., and Cesàro, A. (2016). “The good, the bad and the ugly” of chitosans. Marine Drugs, 14(5), 99.

84.     Sagheer, F. A. Al, Al-Sughayer, M. A., Muslim, S., and Elsabee, M. Z. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 77(2), 410–419.

85.     Mironenko, A., Modin, E., Sergeev, A., Voznesenskiy, S., and Bratskaya, S. (2014). Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chemical Engineering Journal, 244, 457–463.

86.     Omar, N., Fen, Y., Saleviter, S., Daniyal, W., Anas, N., Ramdzan, N., and Roshidi, M. (2019). Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials, 12(12),1928.