Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1628

 

Research Article

 

Comprehensive pharmacognostic and antioxidant profiling of Curcuma macrochlamys leaves using sequential extraction and GC-MS

 

Agustin Yumita*, Ni Putu Ermi Hikmawanti, Annisa Kusuma Dewi, Rofika Ramadhani, and Khoirun Niza

 

Department of Pharmaceutical Biology, Faculty of Pharmacy and Science, University of Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia.

 

*Corresponding author: agustin_yumita@uhamka.ac.id

 

Received: 23 July 2025; Revised: 17 October 2025; Accepted: 1 November 2025; Published: 28 December 2025  

 

Abstract

Curcuma macrochlamys, a lesser-known species of the Zingiberaceae family, possesses promising pharmacological potential. This study aimed to investigate the pharmacognostic characteristics, total phenolic content, antioxidant activity, and chemical constituents of its leaf extracts. The leaves were successively extracted using n-hexane, ethyl acetate, and 96% ethanol. Macroscopic and microscopic analyses revealed key anatomical features, including spiral vessels, oleoresin cells, trichomes, and calcium oxalate crystals. The ethanolic extract yielded the highest phenolic content (22.688 ± 0.450 mg GAE/g) and exhibited the strongest antioxidant activity as determined by DPPH and FRAP assays. GC-MS analysis identified several bioactive compounds such as dodecanoic acid-methyl ester, methyl linolenate, and phytol, known for their antioxidant and antimicrobial properties. These findings highlight the potential of C. macrochlamys leaf extracts, particularly the ethanolic fraction, as a natural antioxidant source for pharmaceutical applications.

 

Keywords: Curcuma macrochlamys; antioxidant; phenolic content; GC-MS; pharmacognosy



References

1.      Awin, T., Mediani, A., Maulidiani, Shaari, K., Faudzi, S. M. M., Sukari, M. A. H., Lajis, N. H., and Abas, F. (2016). Phytochemical profiles and biological activities of Curcuma species subjected to different drying methods and solvent systems: NMR-based metabolomics approach. Industrial Crops and Products, 94, 342–352.

2.      Taheri, S., Abdullah, T. L., Karimi, E., Oskoueian, E., and Ebrahimi, M. (2014). Antioxidant capacities and total phenolic contents enhancement with acute gamma irradiation in Curcuma alismatifolia (Zingiberaceae) leaves. International Journal of Molecular Sciences, 15(7), 13077–13090.

3.      Gharge, S., Hiremath, S. I., Kagawad, P., Jivaje, K., Palled, M. S., and Suryawanshi, S. S. (2021). Curcuma zedoaria Rosc (Zingiberaceae): a review on its chemical, pharmacological and biological activities. Future Journal of Pharmaceutical Sciences, 7(1), 1–9.

4.      World Health Organization. (2011). Quality control methods for herbal materials. World Health Organization. WHO Library Cataloguing-in-Publication.

5.      Yuhendri, R., Nurainas, Maideliza, T., Meriko, L., Alponsin, and Wahab, I. R. A. (2025). Anatomy and powder microscopy of Curcuma sumatrana Miq. (Zingiberaceae). Biodiversitas, 26(2), 900–908.

6.      Dan, M. (2020). Taxonomic significance on comparative petiole anatomy of twelve species of Curcuma L. (Zingiberaceae) From South India. Plant Archives, 20(1), 35–41.

7.      Zohmachhuana, A., Malsawmdawngliana, Lalnunmawia, F., Mathipi, V., Lalrinzuali, K., and Kumar, N. S. (2022). Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomedicine and Pharmacotherapy, 150, 113039.

8.      Dai, J., and Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313–7352.

9.      Ministry of Health Republic of Indonesia. (2017). Farmakope Herbal Indonesia Edisi II (Indonesian Herbal Pharmacopoeia). Kementerian Kesehatan RI.

10.    Bobo-Garcνa, G., Davidov-Pardo, G., Arroqui, C., Vνrseda, P., Marνn-Arroyo, M. R., and Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209.

11.    Ladeska, V., Saudah, S., and Inggrid, R. (2022). Potensi Antioksidan, Kadar Fenolat dan Flavonoid Total Ranting Tetracera indica serta Uji Toksisitas terhadap sel RAW 264,7. Jurnal Sains Farmasi and Klinis, 9(2), 95.

12.    Seema, R., Madhvi, S., and Lavania, S. (2025). Leaf epidermal characterization of selected species of genus Curcuma L. (Zingiberaceae). J. Indian Botanical Society, 105(1), 23–32.

13.    Windarsih, G., Riastiwi, I., Dewi, A. P., and Yuriyah, S. (2022). Stomatal and epidermal characteristics of Zingiberaceae in Serang District, Banten, Indonesia. Biodiversitas, 23(10), 5373–5386.

14.    Do, Q., Angkawijaya, A., Tran-Nguyen, P., Huynh, L., Soetaredjo, F., Ismadji, S., and Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302.

15.    Azwanida, N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4(3), 3–8.

16.    Casanova, J. M., Dos Santos Nascimento, L. B., Casanova, L. M., Leal-Costa, M. V., Costa, S. S., and Tavares, E. S. (2020). Differential distribution of flavonoids and phenolic acids in leaves of kalanchoe delagoensis Ecklon and Zeyher (Crassulaceae). Microscopy and Microanalysis, 26(5), 1061–1068.

17.    Li, Z., Tang, T., Liang, S., Ning, X., Bai, M., and Wu, H. (2012). The synthesis and storage sites of phenolic compounds in the root and rhizome of Echinacea purpurea. American Journal of Plant Sciences, 03(04), 551–558.

18.    Hutzler1, P., Fischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit, M., Weissenbφ, G., and Schnitzler, J. R.-P. (1998). Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. In Journal of Experimental Botany, 49, 323.

19.    Hikmawanti, N. P. E., Yumita, A., Rafiq, M., and Lusiana, L. (2023). Phenolics and flavonoids content of Epiphyllum oxypetalum (DC.) leaves fractions using microplate based assay. Indonesian Journal of Pharmaceutical Science and Technology Journal Homepage, 10(1): 45–51.

20.    Knez, E., Kadac-Czapska, K., and Grembecka, M. (2025). Evaluation of spectrophotometric methods for assessing antioxidant potential in plant food samples-a critical approach. Applied Sciences (Switzerland), 15(11), 5925.

21.    Rice-Evans, C. A., Miller, N. J., and Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.

22.    Azahar, N. F., Gani, S. S. A., and Mohd Mokhtar, N. F. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central Journal, 11(1), 1–10.

23.    Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., and Walker, R. B. (2010). Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. Journal of Agricultural and Food Chemistry, 58(14), 8139–8144.

24.    Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., and Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran Journal Basic Medicine Sciences, 22(3), 225–237.

25.    Shi, Y., Liang, X., Chi, L., Chen, Y., Liang, L., Zhao, J., Luo, Y., Zhang, W., Cai, Q., Wu, X., Tan, Z., and Zhang, L. (2021). Ethanol extracts from twelve Curcuma species rhizomes in China: Antimicrobial, antioxidative and anti-inflammatory activities. South African Journal of Botany, 140, 167–172.

26.    Santhiya, R., and Sridevi, J. (2020). GC-MS analysis of fatty acid components in ethanol extracts of two varieties of pumpkin seeds. International Journal of Creative Research Thoughts, 8(6), 2320–2882.

27.    Tatipamula, V. B., Killari, K. N., Gopaiah, K. V, and Ketha, A. (2019). GC-MS analysis of ethanol extract of taxithelium napalense (Schwaerg) broth along with its a-glucosidase inhibitory activity. Indian Journal of Pharmaceutical Sciences, 3, 569–574.

28.    Abubacker, M. N., and Deepalakshmi, T. (2013). In vitro antifungal potentials of bioactive compound methyl ester of hexadecanoic acid isolated from Annona muricata Linn. (Annonaceae) leaves. Biotech. Res. Asia, 10(2), 879–884.

29.    Madkour, H. M. F., Ghareeb, M. A., Abdel-Aziz, M. S., Khalaf, O. M., Saad, A. M., El-Ziaty, A. K., and Abdel-Mogib, M. (2017). Gas chromatography-mass spectrometry analysis, antimicrobial, anticancer and antioxidant activities of n-hexane and methylene chloride extracts of Senna italica. Journal of Applied Pharmaceutical Science, 7(6), 023–032.

30.    Bello, Z. S., Bappah, A. M., Mhya, H. D., Usman, S. Y., and Kolawole, J. A. (2025). GC-MS fingerprint of Mitracarpus hirtus and Commiphora africana: Medicinal plants used in the treatment of skin and wound infections in Bauchi Town. Tropical Journal of Drug Research, 2(4), 80–89.

31. Mohammadi, G., Zangeneh, M. M., Zangeneh, A., and Haghighi, Z. M. S. (2020). Chemical characterization and anti-breast cancer effects of silver nanoparticles using Phoenix dactylifera seed ethanolic extract on 7,12-Dimethylbenz[a] anthracene-induced mammary gland carcinogenesis in Sprague Dawley male rats. Applied Organometallic Chemistry, 34(1), 1–20.

32.   Ko, G. A., Shrestha, S., and Cho, S. K. (2018). Sageretia thea fruit extracts rich in methyl linoleate and methyl linolenate downregulate melanogenesis via the Akt/GSK3β signaling pathway. Nutrition Research and Practice, 12(1), 3–12.

33.    Sharma, T., Magar, A. B., Khatri, S., Lohani, I., Pakka, S., and Sharma, K. R. (2025). Phytochemical and biological evaluation on leaf and rhizome extracts of Curcuma caesia growing in Nepal. Journal of Nepal Chemical Society, 45(1), 122–132.

34.    Anekwe, I. I., Chinwe, I., Chikwendu, S., and Amadi, N. U. (2023). Gas chromatography-mass spectrometry analysis of bioactive compounds of Curcuma longa leaves extract. International Journal of Chemical and Biological Sciences, 17(3), 1199–1207.

35.    Majeed, R., and Mahmood, A. K. (2025). Phytochemical and antioxidant analysis of ginger (Zingiber officinale) ethanolic extract. Advancements in Life Sciences, 2(12), 331–339.