Malays. J. Anal. Sci.
Volume 29 Number 6 (2025): 1628
Research Article
Comprehensive pharmacognostic and antioxidant
profiling of Curcuma macrochlamys leaves using sequential extraction and GC-MS
Agustin
Yumita*, Ni Putu Ermi Hikmawanti, Annisa Kusuma Dewi, Rofika
Ramadhani, and Khoirun Niza
Department of Pharmaceutical
Biology, Faculty of Pharmacy and Science, University of Muhammadiyah Prof. Dr.
Hamka, Jakarta, Indonesia.
*Corresponding author: agustin_yumita@uhamka.ac.id
Received:
23 July 2025; Revised: 17 October 2025; Accepted: 1 November 2025; Published: 28
December 2025
Abstract
Curcuma macrochlamys, a lesser-known species of the Zingiberaceae family,
possesses promising pharmacological potential. This study aimed to investigate
the pharmacognostic characteristics, total phenolic content, antioxidant
activity, and chemical constituents of its leaf extracts. The leaves were
successively extracted using n-hexane, ethyl acetate, and 96% ethanol.
Macroscopic and microscopic analyses revealed key anatomical features,
including spiral vessels, oleoresin cells, trichomes, and calcium oxalate
crystals. The ethanolic extract yielded the highest phenolic content (22.688 ± 0.450 mg GAE/g) and exhibited
the strongest antioxidant activity as determined by DPPH and FRAP assays. GC-MS
analysis identified several bioactive compounds such as dodecanoic acid-methyl ester, methyl linolenate, and phytol, known for their
antioxidant and antimicrobial properties. These findings highlight the
potential of C. macrochlamys leaf extracts, particularly the
ethanolic fraction, as a natural antioxidant source for pharmaceutical
applications.
Keywords: Curcuma macrochlamys; antioxidant; phenolic content; GC-MS; pharmacognosy
References
1. Awin,
T., Mediani, A., Maulidiani, Shaari, K., Faudzi, S. M. M., Sukari, M. A. H.,
Lajis, N. H., and Abas, F. (2016). Phytochemical profiles and biological
activities of Curcuma species subjected to different drying methods and
solvent systems: NMR-based metabolomics approach. Industrial Crops and
Products, 94, 342352.
2. Taheri,
S., Abdullah, T. L., Karimi, E., Oskoueian, E., and Ebrahimi, M. (2014).
Antioxidant capacities and total phenolic contents enhancement with acute
gamma irradiation in Curcuma alismatifolia (Zingiberaceae) leaves. International
Journal of Molecular Sciences, 15(7), 1307713090.
3. Gharge,
S., Hiremath, S. I., Kagawad, P., Jivaje, K., Palled, M. S., and Suryawanshi,
S. S. (2021). Curcuma zedoaria Rosc (Zingiberaceae): a review on its
chemical, pharmacological and biological activities. Future Journal of
Pharmaceutical Sciences, 7(1), 19.
4. World
Health Organization. (2011). Quality control methods for herbal materials.
World Health Organization. WHO Library Cataloguing-in-Publication.
5. Yuhendri,
R., Nurainas, Maideliza, T., Meriko, L., Alponsin, and Wahab, I. R. A. (2025).
Anatomy and powder microscopy of Curcuma sumatrana Miq.
(Zingiberaceae). Biodiversitas, 26(2), 900908.
6. Dan,
M. (2020). Taxonomic significance on comparative petiole anatomy of twelve
species of Curcuma L. (Zingiberaceae) From South India. Plant Archives,
20(1), 3541.
7. Zohmachhuana,
A., Malsawmdawngliana, Lalnunmawia, F., Mathipi, V., Lalrinzuali, K., and
Kumar, N. S. (2022). Curcuma aeruginosa Roxb. exhibits cytotoxicity in
A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways.
Biomedicine and Pharmacotherapy, 150, 113039.
8. Dai,
J., and Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their
antioxidant and anticancer properties. Molecules, 15, 73137352.
9. Ministry
of Health Republic of Indonesia. (2017). Farmakope Herbal Indonesia Edisi
II (Indonesian Herbal Pharmacopoeia). Kementerian Kesehatan RI.
10. Bobo-Garcνa,
G., Davidov-Pardo, G., Arroqui, C., Vνrseda, P., Marνn-Arroyo, M. R., and
Navarro, M. (2015). Intra-laboratory validation of microplate methods for
total phenolic content and antioxidant activity on polyphenolic extracts, and
comparison with conventional spectrophotometric methods. Journal of the
Science of Food and Agriculture, 95(1), 204209.
11. Ladeska,
V., Saudah, S., and Inggrid, R. (2022). Potensi Antioksidan, Kadar Fenolat dan
Flavonoid Total Ranting Tetracera indica serta Uji Toksisitas terhadap sel RAW
264,7. Jurnal Sains Farmasi and Klinis, 9(2), 95.
12. Seema,
R., Madhvi, S., and Lavania, S. (2025). Leaf epidermal characterization of
selected species of genus Curcuma L. (Zingiberaceae). J. Indian Botanical
Society, 105(1), 2332.
13. Windarsih,
G., Riastiwi, I., Dewi, A. P., and Yuriyah, S. (2022). Stomatal and epidermal
characteristics of Zingiberaceae in Serang District, Banten, Indonesia. Biodiversitas,
23(10), 53735386.
14. Do,
Q., Angkawijaya, A., Tran-Nguyen, P., Huynh, L., Soetaredjo, F., Ismadji, S., and
Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total
flavonoid content, and antioxidant activity of Limnophila aromatica. Journal
of Food and Drug Analysis, 22(3), 296302.
15. Azwanida,
N. (2015). A review on the extraction methods use in medicinal plants,
principle, strength and limitation. Medicinal and Aromatic Plants, 4(3),
38.
16. Casanova,
J. M., Dos Santos Nascimento, L. B., Casanova, L. M., Leal-Costa, M. V.,
Costa, S. S., and Tavares, E. S. (2020). Differential distribution of
flavonoids and phenolic acids in leaves of kalanchoe delagoensis Ecklon and
Zeyher (Crassulaceae). Microscopy and Microanalysis, 26(5), 10611068.
17. Li,
Z., Tang, T., Liang, S., Ning, X., Bai, M., and Wu, H. (2012). The synthesis
and storage sites of phenolic compounds in the root and rhizome of Echinacea
purpurea. American Journal of Plant Sciences, 03(04), 551558.
18. Hutzler1,
P., Fischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit,
M., Weissenbφ, G., and Schnitzler, J. R.-P. (1998). Tissue localization of
phenolic compounds in plants by confocal laser scanning microscopy. In Journal
of Experimental Botany, 49, 323.
19. Hikmawanti,
N. P. E., Yumita, A., Rafiq, M., and Lusiana, L. (2023). Phenolics and
flavonoids content of Epiphyllum oxypetalum (DC.) leaves fractions
using microplate based assay. Indonesian Journal of Pharmaceutical Science
and Technology Journal Homepage, 10(1): 4551.
20. Knez,
E., Kadac-Czapska, K., and Grembecka, M. (2025). Evaluation of
spectrophotometric methods for assessing antioxidant potential in plant food
samples-a critical approach. Applied Sciences (Switzerland), 15(11),
5925.
21. Rice-Evans,
C. A., Miller, N. J., and Paganga, G. (1997). Antioxidant properties of
phenolic compounds. Trends in Plant Science, 2(4), 152159.
22. Azahar,
N. F., Gani, S. S. A., and Mohd Mokhtar, N. F. (2017). Optimization of
phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves
using response surface methodology. Chemistry Central Journal, 11(1),
110.
23. Everette,
J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., and Walker,
R. B. (2010). Thorough study of reactivity of various compound classes toward
the folin-Ciocalteu reagent. Journal of Agricultural and Food Chemistry,
58(14), 81398144.
24. Kahkeshani,
N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R.,
Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., and Bishayee, A.
(2019). Pharmacological effects of gallic acid in health and diseases: A
mechanistic review. Iran Journal Basic Medicine Sciences, 22(3),
225237.
25. Shi,
Y., Liang, X., Chi, L., Chen, Y., Liang, L., Zhao, J., Luo, Y., Zhang, W.,
Cai, Q., Wu, X., Tan, Z., and Zhang, L. (2021). Ethanol extracts from twelve
Curcuma species rhizomes in China: Antimicrobial, antioxidative and
anti-inflammatory activities. South African Journal of Botany, 140,
167172.
26. Santhiya,
R., and Sridevi, J. (2020). GC-MS analysis of fatty acid components in ethanol
extracts of two varieties of pumpkin seeds. International Journal of
Creative Research Thoughts, 8(6), 23202882.
27. Tatipamula,
V. B., Killari, K. N., Gopaiah, K. V, and Ketha, A. (2019). GC-MS analysis of
ethanol extract of taxithelium napalense (Schwaerg) broth along with its a-glucosidase
inhibitory activity. Indian Journal of Pharmaceutical Sciences, 3,
569574.
28. Abubacker,
M. N., and Deepalakshmi, T. (2013). In vitro antifungal potentials of
bioactive compound methyl ester of hexadecanoic acid isolated from Annona
muricata Linn. (Annonaceae) leaves. Biotech. Res. Asia, 10(2), 879884.
29. Madkour,
H. M. F., Ghareeb, M. A., Abdel-Aziz, M. S., Khalaf, O. M., Saad, A. M.,
El-Ziaty, A. K., and Abdel-Mogib, M. (2017). Gas chromatography-mass
spectrometry analysis, antimicrobial, anticancer and antioxidant activities of
n-hexane and methylene chloride extracts of Senna italica. Journal of
Applied Pharmaceutical Science, 7(6), 023032.
30. Bello,
Z. S., Bappah, A. M., Mhya, H. D., Usman, S. Y., and Kolawole, J. A. (2025).
GC-MS fingerprint of Mitracarpus hirtus and Commiphora africana:
Medicinal plants used in the treatment of skin and wound infections in Bauchi
Town. Tropical Journal of Drug Research, 2(4), 8089.
31. Mohammadi, G., Zangeneh, M. M.,
Zangeneh, A., and Haghighi, Z. M. S. (2020). Chemical characterization and
anti-breast cancer effects of silver nanoparticles using Phoenix dactylifera
seed ethanolic extract on 7,12-Dimethylbenz[a] anthracene-induced mammary
gland carcinogenesis in Sprague Dawley male rats. Applied Organometallic
Chemistry, 34(1), 120.
32. Ko,
G. A., Shrestha, S., and Cho, S. K. (2018). Sageretia thea fruit extracts rich
in methyl linoleate and methyl linolenate downregulate melanogenesis via the
Akt/GSK3β signaling pathway. Nutrition Research and Practice, 12(1),
312.
33. Sharma,
T., Magar, A. B., Khatri, S., Lohani, I., Pakka, S., and Sharma, K. R. (2025).
Phytochemical and biological evaluation on leaf and rhizome extracts of Curcuma
caesia growing in Nepal. Journal of Nepal Chemical Society, 45(1),
122132.
34. Anekwe,
I. I., Chinwe, I., Chikwendu, S., and Amadi, N. U. (2023). Gas chromatography-mass
spectrometry analysis of bioactive compounds of Curcuma longa leaves
extract. International Journal of Chemical and Biological Sciences, 17(3),
11991207.
35. Majeed,
R., and Mahmood, A. K. (2025). Phytochemical and antioxidant analysis of
ginger (Zingiber officinale) ethanolic extract. Advancements in Life
Sciences, 2(12), 331339.