Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1614
Review Article
Adsorptive separation and influencing
factors of bisphenols from environmental matrices using silica-based
adsorbents: A review
Nur Farahin Mohd Ali1, Rico Ramadhan2,7, Noorfatimah Yahaya1,2*,
Maisarah Nasution Waras1**, Ahmad
Husaini Mohamed3, Nadhiratul Farihin Semail4,
Mohd Yusmaidie Aziz1, Sazlinda
Kamaruzaman5, Kit Wayne Chew6,
Nur Nadhirah Mohamad Zain1, Muggundha
Raoov8
1Department of Toxicology, Cancer
Research and Specialist Centre, Universiti Sains Malaysia, 13200 Bertam Kepala
Batas, Penang, Malaysia
2Exploration and Synthesis of
Bioactive Compounds (ESBC), University Center of Excellence Research Center for
Bio-Molecule Engineering (BIOME), Universitas Airlangga 60115, Indonesia
3School of Chemistry and Environment,
Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri
Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
4Chemical and Science Department,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
5Department of Chemistry, Faculty of
Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
6School of Chemistry, Chemical
Engineering and Biotechnology, Nanyang Technological University, 637459,
Singapore
7Department of Chemistry, Faculty of
Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
8Department of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
*Corresponding
author: noorfatimah@usm.my; maisarah.waras@usm.my
Received:
7 July 2025; Revised: 3 November 2025; Accepted: 14 November 2025; Published: 30
December 2025
Abstract
Bisphenol A (BPA) and its analogues are extensively
used in the plastic manufacturing industry and are recognized globally as
endocrine-disrupting chemicals. Due to their relatively similar chemical
structures, BPA analogues exhibit comparable or even greater toxic effects.
These bisphenols have raised significant concerns among the scientific
community and environmentalists, and their potential impacts require further
investigation and evaluation. Effective techniques for the removal of these
emerging contaminants are urgently needed. This review presents a comprehensive
and critical summary of recent advancements in silica-based adsorbents for the
removal of emerging bisphenols, covering developments from 2010 to the most
recently published studies. Silica has played an important role as a sorbent in
adsorption technologies due to its unique physicochemical properties, including
high surface area, tuneable pore structure, and thermal stability. In this
review, the surface modification and functionalization strategies aimed at
enhancing adsorption capacity and selectivity are elaborated. Key variables,
comparisons between different silica adsorbents, and adsorption mechanisms are
discussed in detail. This review serves as a valuable reference for the development
of efficient, low-cost, and selective adsorbents for the removal of bisphenols
and other emerging contaminants.
Keywords: adsorption, bisphenols, silica, water
pollutant removal, safe water access
References
1.
Fang, Z.,
Gao, Y., Wu, X., Xu, X., Sarmah, A. K., Bolan, N., Gao, B., Shaheen, S. M.,
Rinklebe, J., Ok, Y. S., Xu, S., and Wang, H. (2020). A critical review on
remediation of bisphenol S (BPS) contaminated water: Efficacy and mechanisms. Critical
Reviews in Environmental Science and Technology, 50(5), 476–522.
2.
Bhatnagar,
A., and Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from
aqueous solution: A review. Chemosphere, 168, 885–902.
3.
Xiao, Z.,
Wang, R., Suo, D., Li, T., and Su, X. (2020). Trace analysis of bisphenol A and
its analogues in eggs by ultra-performance liquid chromatography–tandem mass
spectrometry. Food Chemistry, 327, 126882.
4.
Peng, G.,
Lu, Y., You, W., Yin, Z., Li, Y., and Gao, Y. (2020). Analysis of five
bisphenol compounds in sewage sludge by dispersive solid-phase extraction with
magnetic montmorillonite. Microchemical Journal, 157, 105040.
5.
Wang, H.,
Liu, Z.-H., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P.-X., and Liu, Y.
(2020). Bisphenol analogues in Chinese bottled water: Quantification and
potential risk analysis. Science of the Total Environment, 713, 136583.
6.
Hu, J.,
Liu, W., Liu, H., Wu, L., and Zhang, H. (2018). Preparation and enrichment
properties of magnetic dodecyl chitosan/silica composite for emerging bisphenol
contaminants. Materials, 11(10), 1881.
7.
Liu, J.,
Zhang, L., Lu, G., Jiang, R., Yan, Z., and Li, Y. (2021). Occurrence, toxicity
and ecological risk of bisphenol A analogues in aquatic environment: A review. Ecotoxicology
and Environmental Safety, 208, 111481.
8.
Danzl, E.,
Sei, K., Soda, S., Ike, M., and Fujita, M. (2009). Biodegradation of bisphenol
A, bisphenol F and bisphenol S in seawater. International Journal of
Environmental Research and Public Health, 6(4), 1472–1484.
9.
Lu, S., Yu,
Y., Ren, L., Zhang, X., Liu, G., and Yu, Y. (2018). Estimation of intake and
uptake of bisphenols and triclosan from personal care products by dermal
contact. Science of the Total Environment, 621, 1389–1396.
10.
Farahin
Mohd Ali, N., Sajid, M., Ibrahim Thani Abd Halim, W., Husaini Mohamed, A.,
Nadhirah Mohamad Zain, N., Kamaruzaman, S., Suhaila Mohamad Hanapi, N., Nazihah
Wan Ibrahim, W., and Yahaya, N. (2023). Recent advances in solid phase
extraction methods for the determination of bisphenol A and its analogues in
environmental matrices: An updated review. Microchemical Journal, 184,
108158.
11.
Liu, R.,
Feng, F., Chen, G., Liu, Z., and Xu, Z. (2016). Barbell-shaped stir bar
sorptive extraction using dummy template molecularly imprinted polymer coatings
for analysis of bisphenol A in water. Analytical and Bioanalytical
Chemistry, 408(19), 5329–5335.
12.
Usman, A., and
Ahmad, M. (2016). From BPA to its analogues: Is it a safe journey? Chemosphere,
158, 131–142.
13.
Valentini,
G., Caon, N. B., Faita, F. L., and Parize, A. L. (2023). Adsorption properties
of magnetic CoFe₂O₄@SiO₂ decorated with P4VP applied to
bisphenol A. Journal of the Brazilian Chemical Society, 34(2), 167–181.
14.
Ohore, O.
E., and Songhe, Z. (2019). Endocrine disrupting effects of bisphenol A exposure
and recent advances on its removal by water treatment systems: A review. Scientific
African, 5, e00135.
15.
Chen, L.,
He, Y., Lei, Z., Gao, C., Xie, Q., Tong, P., and Lin, Z. (2018). Preparation of
core–shell structured magnetic covalent organic framework nanocomposites for
magnetic solid-phase extraction of bisphenols from human serum samples. Talanta,
181, 296–304.
16.
Kataria,
N., Bhushan, D., Gupta, R., Rajendran, S., Teo, M. Y. M., and Khoo, K. S.
(2022). Current progress in treatment technologies for plastic waste (bisphenol
A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. Environmental
Pollution, 315, 120319.
17.
Xu, Q.,
Liu, X., Lai, D., Xing, Z., Ndagijimana, P., Li, Z., and Wang, Y. (2022).
One-step synthesis of nanoscale zero-valent iron-modified hydrophobic
mesoporous activated carbon for efficient removal of bulky organic pollutants. Journal
of Cleaner Production, 356, 131854.
18.
Funari
Junior, R. A., Frescura, L. M., de Menezes, B. B., and da Rosa, M. B. (2024). 4-Nonylphenol
adsorption, environmental impact and remediation: A review. Environmental
Chemistry Letters.
19.
Bagheri, A.
R., and Shokrollahi, A. (2024). Recent trends in the use of silica-based
materials and their composites in extraction techniques: A review. TrAC –
Trends in Analytical Chemistry, 180, 117910.
20.
Tokula, B.
E., Dada, A. O., Inyinbor, A. A., Obayomi, K. S., Bello, O. S., and Pal, U.
(2023). Agro-waste-based adsorbents as sustainable materials for effective
adsorption of bisphenol A from the environment: A review. Journal of Cleaner
Production, 388, 135819.
21.
Abedpour,
H., Moghaddas, J. S., Borhani, M. N., and Borhani, T. N. (2023). Separation of
toxic contaminants from water by silica aerogel-based adsorbents: A
comprehensive review. Journal of Water Process Engineering, 53, 103676.
22.
Fatimah,
I., Fadillah, G., Purwiandono, G., Sahroni, I., Purwaningsih, D., Riantana, H.,
Avif, A. N., and Sagadevan, S. (2022). Magnetic-silica nanocomposites and the
functionalized forms for environment and medical applications: A review. Inorganic
Chemistry Communications, 137, 109213.
23.
Wamba, A.
G. N., Kofa, G. P., Koungou, S. N., Thue, P. S., Lima, E. C., Dos Reis, G. S., and
Kayem, J. G. (2018). Grafting of amine functional groups on silicate-based
materials as adsorbents for water purification: A short review. Journal of
Environmental Chemical Engineering, 6(2), 3192–3203.
24.
Cashin, V.
B., Eldridge, D. S., Yu, A., and Zhao, D. (2018). Surface functionalization and
manipulation of mesoporous silica adsorbents for improved removal of
pollutants: A review. Environmental Science: Water Research and Technology,
4(2), 110–128.
25.
Speltini,
A., Scalabrini, A., Maraschi, F., Sturini, M., and Profumo, A. (2017). Newest
applications of molecularly imprinted polymers for extraction of contaminants
from environmental and food matrices: A review. Analytica Chimica Acta, 974,
1–26.
26.
Agrahari,
R., Iqbal, K., Tyagi, J., Joshi, N. C., Shukla, S., Shukla, K., Varma, A., and
Mishra, A. (2023). Diatoms in biomedicines and nanomedicines. In Diatoms
(pp. 195–210). Springer.
27.
Mabidi, T.
J., Izevbekhai, O. U., Gitari, W. M., Mudzielwana, R., and Ayinde, W. B.
(2023). Preparation and characterization of acid-leached diatomaceous earth for
application in the treatment of oily wastewater. Physics and Chemistry of
the Earth, Parts A/B/C, 132, 103497.
28.
Jemai, R.,
Chalghaf, R., Boubakri, S., Djebbi, M. A., Naamen, S., Rhaiem, H. B., and
Amara, A. B. H. (2024). Montmorillonite: Properties, characteristics, and its
harnessing in environmental applications. In Recent Advances in
Montmorillonite. IntechOpen.
29.
Zango, Z.
U., Garba, A., Garba, Z. N., Zango, M. U., Usman, F., and Lim, J.-W. (2022).
Montmorillonite for adsorption and catalytic elimination of pollutants from
wastewater: A state-of-the-art review. Sustainability, 14(24), 16441.
30.
Khan, S.,
Ajmal, S., Hussain, T., and Rahman, M. U. (2023). Clay-based materials for
enhanced water treatment: Adsorption mechanisms, challenges, and future
directions. Journal of Umm Al-Qura University for Applied Sciences, 1,
1–16.
31.
Zeidman, A.
B., Rodriguez-Narvaez, O. M., Moon, J., and Bandala, E. R. (2020). Removal of
antibiotics in aqueous phase using silica-based immobilized nanomaterials: A
review. Environmental Technology and Innovation, 20, 101030.
32.
Wang, B.,
Gao, X., Qiu, R., Chen, Y., Gao, Y., Hu, G., and Yu, D. (2025). Adsorption of
PFCs and antibiotics from water using mesoporous silica and
amino-functionalized mesoporous silicon materials: A review. Chemical
Engineering Journal, 505, 159642.
33.
Liu, X.,
Hu, Y., Huang, J., and Wei, C. (2016). Detailed characteristics of adsorption
of bisphenol A by highly hydrophobic MCM-41 mesoporous molecular sieves. Research
on Chemical Intermediates, 42(9), 7169–7183.
34.
Brankovic,
M., Zarubica, A., Andjelkovic, T., and Andjelkovic, D. (2017). Mesoporous
silica (MCM-41): Synthesis/modification, characterization and removal of
selected organic micropollutants from water. Advanced Technologies, 6(1),
50–57.
35.
Sacramento,
R. A., Cysneiros, O. M. S., Silva, B. J. B., and Silva, A. O. S. (2019).
Synthesis and characterization of mesoporous materials with SBA and MCM
structure types. Cerâmica, 65(376), 585–591.
36.
Jin, Z.,
Xu, Y., Lin, S., and Sheng, J. (2016). Cubic mesoporous silica material as a
highly efficient solid-phase extraction sorbent for bisphenol A and
tert-nonylphenol from water. Journal of Nanoscience and Nanotechnology, 16(6),
5833–5838.
37.
Amarh, F.
A., Kangmennaa, A., Agorku, E. S., and Voegborlo, R. B. (2024). A
state-of-the-art review of trends in molecularly imprinted polymers in the
clean-up of pesticides in environmental samples. Sustainable Environment, 10(1),
2298067.
38.
Jiang, X.,
Tian, W., Zhao, C., Zhang, H., and Liu, M. (2007). A novel sol–gel material
prepared by a surface imprinting technique for the selective solid-phase
extraction of bisphenol A. Talanta, 72(1), 119–125.
39.
Hu, X., Wu,
X., Yang, F., Wang, Q., He, C., and Liu, S. (2016). Novel surface dummy
molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol
A from water samples. Talanta, 148, 29–36.
40.
Chen, J.,
Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation
of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a
semi-covalent imprinting approach for the rapid and selective removal of
bisphenols from environmental water samples. Water, 14(24), 4125.
41.
Gavrila, A.
M., Radu, I. C., Stroescu, H., Zaharia, A., Stoica, E. B., Ciurlica, A. L.,
Iordache, T. V., and Sârbu, A. (2021). Role of functional monomers upon the
properties of bisphenol A molecularly imprinted silica films. Applied
Sciences, 11(7), 2956.
42.
Wang, Z.,
Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three
functionalized silica adsorbents: Impact of co-immobilization of imidazole,
phenyl and long-chain alkyl groups on bisphenol A adsorption from high-salt
aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86,
120–132.
43.
Wang, H.,
Wang, D., Ren, W., and Tian, T. (2024). Effective adsorption of bisphenol A
from water using cationic surfactant-modified natural kaolin minerals. Journal
of Surfactants and Detergents, 27(3), 341–353.
44.
Rovani, S.,
Santos, J. J., Guilhen, S. N., Corio, P., and Fungaro, D. A. (2020). Fast,
efficient and clean adsorption of bisphenol A using renewable mesoporous silica
nanoparticles from sugarcane waste ash. RSC Advances, 10(46),
27706–27712.
45.
Orimolade,
B. O., Adekola, A., Mohammed, A. A., Idris, A. O., Saliu, O. D., and Yusuf, T.
(2018). Removal of bisphenol A from aqueous solution using rice husk
nanosilica: Adsorption kinetics, equilibrium and thermodynamic studies. Journal
of Applied Chemical Research, 12(1), 1–10.
46.
Jadhav, S.
A., Garud, H. B., Patil, A. H., Patil, G. D., Patil, C. R., Dongale, T. D., and
Patil, P. S. (2019). Recent advancements in silica nanoparticles based
technologies for removal of dyes from water. Colloids and Interface Science
Communications, 30, 100181.
47.
Zhou, J.,
Liu, C., Zhong, Y., Luo, Z., and Wu, L. (2024). A review of current
developments in functionalized mesoporous silica nanoparticles: From synthesis
to biosensing applications. Biosensors, 14(12), 575.
48.
Diagboya,
P. N. E., and Dikio, E. D. (2018). Silica-based mesoporous materials: Emerging
designer adsorbents for aqueous pollutants removal and water treatment. Microporous
and Mesoporous Materials, 266, 252–267.
49.
Rajendran,
A., Rajendiran, M., Yang, Z. F., Fan, H. X., Cui, T. Y., Zhang, Y. G., and Li,
W. Y. (2020). Functionalized silicas for metal-free and metal-based catalytic
applications: A review in perspective of green chemistry. Chemical Record,
20(6), 513–540.
50.
Sharma, P.,
Prakash, J., and Kaushal, R. (2024). Eco-friendly synthesis of amino- and
carboxyl-functionalized silica nanoparticles for enhanced adsorption of water
pollutants. Hybrid Advances, 6, 100209.
51.
Choong, C.
E., Ibrahim, S., and Basirun, W. J. (2019). Mesoporous silica from batik sludge
impregnated with aluminum hydroxide for the removal of bisphenol A and
ibuprofen. Journal of Colloid and Interface Science, 541, 12–17.
52.
Kim, Y. H.,
Lee, B., Choo, K. H., and Choi, S. J. (2014). Adsorption characteristics of
phenolic and amino organic compounds on nano-structured silicas functionalized
with phenyl groups. Microporous and Mesoporous Materials, 185, 121–129.
53.
Morin-Crini,
N., Fourmentin, M., Fourmentin, S., Torri, G., and Crini, G. (2019). Synthesis
of silica materials containing cyclodextrin and their applications in
wastewater treatment. Environmental Chemistry Letters, 17(2), 683–696.
54.
Farmany,
A., Mortazavi, S. S., and Mahdavi, H. (2016). Ultrasound-assisted synthesis of
Fe₃O₄/SiO₂ core/shell with enhanced adsorption capacity for
diazinon removal. Journal of Magnetism and Magnetic Materials, 416,
75–80.
55.
Dong, Y.,
Wu, D., Chen, X., and Lin, Y. (2010). Adsorption of bisphenol A from water by
surfactant-modified zeolite. Journal of Colloid and Interface Science, 348(2),
585–590.
56.
Wu, X.,
Wang, X., Lu, W., Wang, X., Li, J., You, H., Xiong, H., and Chen, L. (2016).
Water-compatible temperature and magnetic dual-responsive molecularly imprinted
polymers for recognition and extraction of bisphenol A. Journal of
Chromatography A, 1435, 30–38.
57.
Li, J.,
Zhou, Q., Wu, Y., Yuan, Y., and Liu, Y. (2018). Investigation of nanoscale
zerovalent iron-based magnetic and thermal dual-responsive composite materials
for the removal and detection of phenols. Chemosphere, 195, 472–482.
58.
Zhang, Z.,
Li, L., Wang, H., Guo, L., Zhai, Y., Zhang, J., Yang, Y., Wang, H., Yin, Z., and
Lu, Y. (2018). Preparation of molecularly imprinted ordered mesoporous silica
for rapid and selective separation of trace bisphenol A from water samples. Applied
Surface Science, 448, 380–388.
59.
Inumaru, K.
(2016). Roles of interfaces in nanostructured composites: Nanocatalysts, sponge
crystals and thin films. Journal of the Ceramic Society of Japan, 124(10),
1110–1115.
60.
Yamaguchi,
A., Namekawa, M., Kamijo, T., Itoh, T., and Teramae, N. (2011). Acid–base
equilibria inside amine-functionalized mesoporous silica. Analytical
Chemistry, 83(8), 2939–2946.
61.
Kim, Y. H.,
Lee, B., Choo, K. H., and Choi, S. J. (2011). Selective adsorption of bisphenol
A by organic–inorganic hybrid mesoporous silicas. Microporous and Mesoporous
Materials, 138(1–3), 184–190.
62.
Bhattarai,
B., Muruganandham, M., and Suri, R. P. S. (2014). Development of high
efficiency silica coated β-cyclodextrin polymeric adsorbent for the
removal of emerging contaminants of concern from water. Journal of Hazardous
Materials, 273, 146–154.
63.
Bucur, S.,
Diacon, A., Mangalagiu, I., Mocanu, A., Rizea, F., Dinescu, A., Ghebaur, A.,
Boscornea, A. C., Voicu, G., and Rusen, E. (2022). Bisphenol A adsorption on
silica particles modified with beta-cyclodextrins. Nanomaterials, 12(1),
39.
64.
Zeeshan,
M., Shah, J., Jan, M. R., and Iqbal, M. (2021). Removal of bisphenol A from
aqueous samples using graphene oxide assimilated magnetic silica polyaniline
composite. Journal of Inorganic and Organometallic Polymers and Materials,
31(5), 2073–2082.
65.
Cheng, F., and
Wang, J. (2024). Removal of bisphenol A from wastewater by adsorption and
membrane separation: Performances and mechanisms. Chemical Engineering
Journal, 484, 149414.
66.
Ahmad, A.
L., Chan, C. Y., Abd Shukor, S. R., and Mashitah, M. D. (2009). Adsorption
kinetics and thermodynamics of β-carotene on silica-based adsorbent. Chemical
Engineering Journal, 148(2–3), 378–384.
67.
Bibi, T.,
Ali, A., Alharthi, S., and Santali, E. Y. (2025). Efficient removal of
bisphenol A from water using C18 functionalized silica-coated iron oxide
nanoparticles. Journal of Nanoparticle Research, 27(1).
68.
Muhamad, M.
S., Salim, M. R., Lau, W. J., Hadibarata, T., and Yusop, Z. (2016). Removal of
bisphenol A by adsorption mechanism using PES–SiO₂ composite membranes. Environmental
Technology, 37(15), 1959–1969.
69.
Afzan
Mahmad, Ubaidah Noh, T., Shima Shaharun, M., and Uba Zango, Z. (2022).
Adsorption and molecular docking study of bisphenol A using reusable ZIF-8 (Zn)
metal–organic frameworks in an aqueous solution. Malaysian Journal of
Analytical Sciences, 26(5), 965–975.
70.
Mourão, P.,
Cassavela, C., Cansado, I., Castanheiro, J., Ribeiro, L., and Pagnanelli, F.
(2024). Adsorption of bisphenol A by granular activated carbon prepared with
different silicates as binders. International Journal of Environmental
Science and Technology, 21(4), 3719–3734.
71.
Yu, D., Hu,
X., Wei, S., Wang, Q., He, C., and Liu, S. (2015). Dummy molecularly imprinted
mesoporous silica prepared by hybrid imprinting method for solid-phase
extraction of bisphenol A. Journal of Chromatography A, 1396, 17–24.
72.
Chen, J.,
Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation
of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a
semi-covalent imprinting approach for the rapid and selective removal of
bisphenols from environmental water samples. Water, 14(24), 4135.
73.
Xu, L.,
Bai, T., Yi, X., Zhao, K., Shi, W., Dai, F., Wei, J., Wang, J., and Shi, C.
(2023). Polypropylene fiber grafted calcium alginate with mesoporous silica for
adsorption of bisphenol A and Pb²⁺. International Journal of
Biological Macromolecules, 238, 124131.
74.
Zhu, G.,
Cheng, G., Lu, T., Cao, Z., Wang, L., Li, Q., and Fan, J. (2019). An ionic
liquid functionalized polymer for simultaneous removal of four phenolic
pollutants in real environmental samples. Journal of Hazardous Materials,
373, 347–358.
75.
Raza, S.,
Wen, H., Peng, Y., Zhang, J., Li, X., and Liu, C. (2021). Fabrication of
SiO₂-modified biobased hydrolyzed hollow polymer particles and their
applications in removal of methyl orange dye and bisphenol A. European
Polymer Journal, 144, 110199.
76.
Wang, Z.,
Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three
functionalized silica adsorbents: Impact of co-immobilization of imidazole,
phenyl and long-chain alkyl groups on bisphenol A adsorption from high salt
aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86,
120–132.
77.
Murphy, O.
P., Vashishtha, M., Palanisamy, P., and Kumar, K. V. (2023). A review on the
adsorption isotherms and design calculations for the optimization of adsorbent
mass and contact time. ACS Omega, 8(20), 17407–17430.
78.
Mahmad, A.,
Zango, Z. U., Noh, T. U., Usman, F., Aldaghri, O. A., Ibnaouf, K. H., and
Shaharun, M. S. (2023). Response surface methodology and artificial neural
network for prediction and validation of bisphenol A adsorption onto zeolite
imidazole framework. Groundwater for Sustainable Development, 21,
100925.
79.
Gong, Y.,
Liu, G., Wang, Q., Zhu, A., Liu, P., and Wu, Q. (n.d.). Synthesis of a novel
mesoporous Fe₃O₄@SiO₂/CTAB-SiO₂ composite material and
its application in the efficient removal of bisphenol A from water.
80.
Chen, J.,
Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation
of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a
semi-covalent imprinting approach for the rapid and selective removal of
bisphenols from environmental water samples. Water, 14(24).
81.
Peng, J.,
Li, Y., Sun, X., Huang, C., Jin, J., Wang, J., and Chen, J. (2019). Controlled
manipulation of metal–organic framework layers to nanometer precision inside
large mesochannels of ordered mesoporous silica for enhanced removal of
bisphenol A from water. ACS Applied Materials and Interfaces, 11(4),
4328–4337.
82.
Budnyak, T.
M., Błachnio, M., Slabon, A., Jaworski, A., Tertykh, V. A.,
Deryło-Marczewska, A., and Marczewski, A. W. (2020). Chitosan deposited
onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8
dye capture: Effect of temperature in adsorption equilibrium and kinetics. Journal
of Physical Chemistry C, 124(28), 15312–15323.
83.
Xu, L.,
Bai, T., Yi, X., Zhao, K., Shi, W., Dai, F., Wei, J., Wang, J., and Shi, C.
(2023). Polypropylene fiber grafted calcium alginate with mesoporous silica for
adsorption of bisphenol A and Pb²⁺. International Journal of
Biological Macromolecules, 238, 124131.
84.
Liang, S.,
Ziyu, Z., Fulong, W., Maojuan, B., Xiaoyan, D., and Lingyun, W. (2022).
Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol
A removal. Environmental Research, 205, 112529.
85.
Valentini,
G., Caon, N. B., Faita, F. L., and Parize, A. L. (2023). Adsorption properties
of magnetic CoFe₂O₄@SiO₂ decorated with P4VP applied to
bisphenol A. Journal of the Brazilian Chemical Society, 34(2), 167–181.
86.
Wang, Z.,
Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three
functionalized silica adsorbents: Impact of co-immobilization of imidazole,
phenyl and long-chain alkyl groups on bisphenol A adsorption from high salt
aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86,
120–132.
87.
Chen, J.,
Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation
of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a
semi-covalent imprinting approach for the rapid and selective removal of
bisphenols from environmental water samples. Water, 14(24).
88.
Prete, M.
C., and Tarley, C. R. T. (2019). Bisphenol A adsorption in aqueous medium by
investigating organic and inorganic components of hybrid polymer
(polyvinylpyridine/SiO₂/APTMS). Chemical Engineering Journal, 367,
102–114.
89.
Teixeira,
N. A., Miyazaki, D. M. S., Grassi, M. T., Zawadzki, S. F., and Abate, G.
(2020). Application of a new adhesive elastomeric coating and
hydrophilic–lipophilic-balanced sorbent for modified stir-bar sorptive
extraction. Analytical Methods, 12(48), 5815–5822.
90.
Mohammadi,
A. A., Dehghani, M. H., Mesdaghinia, A., Yaghmaian, K., and Es’haghi, Z.
(2020). Adsorptive removal of endocrine disrupting compounds from aqueous
solutions using magnetic multi-wall carbon nanotubes modified with chitosan
biopolymer based on response surface methodology. International Journal of
Biological Macromolecules, 155, 1019–1029.
91.
Liang, S.,
Ziyu, Z., Fulong, W., Maojuan, B., Xiaoyan, D., and Lingyun, W. (2022).
Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol
A removal. Environmental Research, 205(53), 112529.
92.
Mourão, P.,
Cassavela, C., Cansado, I., Castanheiro, J., Ribeiro, L., and Pagnanelli, F.
(2024). Adsorption of bisphenol A by granular activated carbon prepared with
different silicates as binders. International Journal of Environmental
Science and Technology, 21(4), 3719–3734.
93.
Chen, J.,
Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation
of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a
semi-covalent imprinting approach for the rapid and selective removal of
bisphenols from environmental water samples. Water, 14(24), 4135.
94.
Dura, A.
M., Stefan, D. S., Chiriac, F. L., Trusca, R., Nicoara, A. I., and Stefan, M.
(2023). Clinoptilolite—A sustainable material for the removal of bisphenol A
from water. Sustainability, 15(17), 13253.
95.
de Farias, M.
B., Silva, M. G. C., and Vieira, M. G. A. (2022). Adsorption of bisphenol A from aqueous solution onto
organoclay: Experimental design, kinetic, equilibrium and thermodynamic study. Powder
Technology, 395, 695–707.
96.
Yılmaz,
Ş. (2022). Facile synthesis of surfactant-modified layered double
hydroxide magnetic hybrid composite and its application for bisphenol A
adsorption. Surfaces and Interfaces, 32, 102171.
97.
Tokuyama,
H., Hamazaki, M., and Kubota, M. (2022). Temperature-swing adsorption of
4-isopropylphenol and bisphenol A onto a poly(N-isopropylacrylamide)/silica gel
composite. Materials Today Communications, 33, 104755.
98.
Chatterjee,
A., Jana, A. K., and Basu, J. K. (2020). A novel synthesis of
MIL-53(Al)@SiO₂: An integrated photocatalyst adsorbent to remove
bisphenol A from wastewater. New Journal of Chemistry, 44(43),
18892–18905.
99.
Hadoudi,
N., Ahari, M., Zaki, N., Charki, A., El Ouarghi, H., Bayoussef, A., Mansori,
M., Fouad, M., Salhi, A., and Amhamdi, H. (2024). Removal efficiency of
phenolic compounds (bisphenol A and pentachlorophenol) by adsorption using a
bentonite-CTAB. In Recent advances in montmorillonite (p. 13).
IntechOpen.
100. Fu, D., Zhang, Q., Chen, P., Zheng, X., Hao, J., Mo, P.,
Liu, H., Liu, G., and Lv, W. (2021). Efficient removal of bisphenol pollutants
on imine-based covalent organic frameworks: Adsorption behavior and mechanism. RSC
Advances, 11(30), 18308–18320.
101. Nik Wee, N. N. A., Saleh, N. M., Devi, T., Samsuri, A., and
Salleh, M. Z. M. (2023). Synthesis of silica from rice husk as coating material
on magnetic nanoparticle for efficient adsorption of phenol from water samples.
BioResources, 18(3), 6204–6220.
102. Balarak, D., Mostafapour, F. K., Lee, S. M., and Jeon,
C. (2019). Adsorption of bisphenol A using dried rice husk: Equilibrium,
kinetic and thermodynamic studies. Applied Chemistry for Engineering, 30(3),
316–323.
103. Ayazi, Z., and Matin, A. A. (2016). Development of
carbon nanotube–polyamide nanocomposite-based stir bar sorptive extraction
coupled to HPLC–UV applying response surface methodology for the analysis of
bisphenol A in aqueous samples. Journal of Chromatographic Science, 54(10),
1841–1850.
104. Zhang, G., Wo, R., Sun, Z., Hao, G., Liu, G., Zhang, Y.,
Guo, H., and Jiang, W. (2021). Effective magnetic MOFs adsorbent for the
removal of bisphenol A, tetracycline, Congo red and methylene blue pollutions. Nanomaterials,
11(8), 1917.
105. Yazid, H., Bouzid, T., El Himri, M., Regti, A., and El
Haddad, M. (2024). Bisphenol A remediation using walnut shell as activated
carbon employing experimental design for parameter optimization and theoretical
study to establish the adsorption mechanism. Inorganic Chemistry
Communications, 161, 112064.
106. Wang, J., and Zhang, M. (2020). Adsorption
characteristics and mechanism of bisphenol A by magnetic biochar. International
Journal of Environmental Research and Public Health, 17(3), 1075.
107. Hlekelele, L., Nomadolo, N. E., Setshedi, K. Z.,
Mofokeng, L. E., Chetty, A., and Chauke, V. P. (2019). Synthesis and
characterization of polyaniline, polypyrrole and zero-valent iron-based
materials for the adsorptive and oxidative removal of bisphenol A from aqueous
solution. RSC Advances, 9(25), 14531–14543.
108. Hadoudi, N., Amhamdi, H., and Ahari, M. (2021). Sorption
of bisphenol A from aqueous solutions using natural adsorbents: Isotherm,
kinetic and effect of temperature. E3S Web of Conferences, 314, 07003.
109. Tie, L., Zhang, W. X., and Deng, Z. (2024). Composite
hydrogel derived iron/nitrogen co-doped carbon for bisphenol A removal. Separation
and Purification Technology, 340, 126752.
110. Zafar, F. F., Barati, B., Rasoulzadeh, H.,
Sheikhmohammadi, A., Wang, S., and Chen, H. (2022). Adsorption kinetics
analysis and optimization of bisphenol A onto magnetic activated carbon with
shrimp shell-based precursor. Biomass and Bioenergy, 166, 106604.
111. Kakavandi, B., Jahangiri-Rad, M., Rafiee, M., Esfahani,
A. R., and Babaei, A. A. (2016). Development of response surface methodology
for optimization of phenol and p-chlorophenol adsorption on magnetic
recoverable carbon. Microporous and Mesoporous Materials, 231, 192–206.
112. Yamada, K., Terada, S., Yamamoto, R., Anh, D. C.,
Naitou, T., and Yamamoto, S. (2024). Adsorptive removal of bisphenol A by
polyethylene meshes grafted with an amino group-containing monomer,
2-(dimethylamino)ethyl methacrylate. Physchem, 4(4), 431–446.
113. Cyran, J. D., Donovan, M. A., Vollmer, D., Brigiano, F.
S., Pezzotti, S., Galimberti, D. R., Gaigeot, M. P., Bonn, M., and Backus, E.
H. G. (2019). Molecular hydrophobicity at a macroscopically hydrophilic
surface. Proceedings of the National Academy of Sciences of the United
States of America, 116(5), 1520–1525.
114. Muhamad, M. S., Salim, M. R., Lau, W. J., and Yusop, Z.
(2016). A review on bisphenol A occurrences, health effects and treatment
process via membrane technology for drinking water. Environmental Science
and Pollution Research, 23(12), 11549–11567.
115. Li, Q., Pan, F., Li, W., Li, D., Xu, H., Xia, D., and
Li, A. (2018). Enhanced adsorption of bisphenol A
from aqueous solution with 2-vinylpyridine functionalized magnetic
nanoparticles. Polymers, 10(10), 1136.