Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1614

 

Review Article

 

Adsorptive separation and influencing factors of bisphenols from environmental matrices using silica-based adsorbents: A review

 

Nur Farahin Mohd Ali1, Rico Ramadhan2,7, Noorfatimah Yahaya1,2*, Maisarah Nasution Waras1**, Ahmad Husaini Mohamed3, Nadhiratul Farihin Semail4, Mohd Yusmaidie Aziz1, Sazlinda Kamaruzaman5, Kit Wayne Chew6, Nur Nadhirah Mohamad Zain1, Muggundha Raoov8

 

1Department of Toxicology, Cancer Research and Specialist Centre, Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia

2Exploration and Synthesis of Bioactive Compounds (ESBC), University Center of Excellence Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga 60115, Indonesia

3School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

4Chemical and Science Department, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

5Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

6School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore

7Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

8Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia

 

*Corresponding author: noorfatimah@usm.my; maisarah.waras@usm.my

 

Received: 7 July 2025; Revised: 3 November 2025; Accepted: 14 November 2025; Published: 30 December 2025

 

Abstract

Bisphenol A (BPA) and its analogues are extensively used in the plastic manufacturing industry and are recognized globally as endocrine-disrupting chemicals. Due to their relatively similar chemical structures, BPA analogues exhibit comparable or even greater toxic effects. These bisphenols have raised significant concerns among the scientific community and environmentalists, and their potential impacts require further investigation and evaluation. Effective techniques for the removal of these emerging contaminants are urgently needed. This review presents a comprehensive and critical summary of recent advancements in silica-based adsorbents for the removal of emerging bisphenols, covering developments from 2010 to the most recently published studies. Silica has played an important role as a sorbent in adsorption technologies due to its unique physicochemical properties, including high surface area, tuneable pore structure, and thermal stability. In this review, the surface modification and functionalization strategies aimed at enhancing adsorption capacity and selectivity are elaborated. Key variables, comparisons between different silica adsorbents, and adsorption mechanisms are discussed in detail. This review serves as a valuable reference for the development of efficient, low-cost, and selective adsorbents for the removal of bisphenols and other emerging contaminants.

 

Keywords: adsorption, bisphenols, silica, water pollutant removal, safe water access

 


References

1.         Fang, Z., Gao, Y., Wu, X., Xu, X., Sarmah, A. K., Bolan, N., Gao, B., Shaheen, S. M., Rinklebe, J., Ok, Y. S., Xu, S., and Wang, H. (2020). A critical review on remediation of bisphenol S (BPS) contaminated water: Efficacy and mechanisms. Critical Reviews in Environmental Science and Technology, 50(5), 476–522.

2.         Bhatnagar, A., and Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere, 168, 885–902.

3.         Xiao, Z., Wang, R., Suo, D., Li, T., and Su, X. (2020). Trace analysis of bisphenol A and its analogues in eggs by ultra-performance liquid chromatography–tandem mass spectrometry. Food Chemistry, 327, 126882.

4.         Peng, G., Lu, Y., You, W., Yin, Z., Li, Y., and Gao, Y. (2020). Analysis of five bisphenol compounds in sewage sludge by dispersive solid-phase extraction with magnetic montmorillonite. Microchemical Journal, 157, 105040.

5.         Wang, H., Liu, Z.-H., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P.-X., and Liu, Y. (2020). Bisphenol analogues in Chinese bottled water: Quantification and potential risk analysis. Science of the Total Environment, 713, 136583.

6.         Hu, J., Liu, W., Liu, H., Wu, L., and Zhang, H. (2018). Preparation and enrichment properties of magnetic dodecyl chitosan/silica composite for emerging bisphenol contaminants. Materials, 11(10), 1881.

7.         Liu, J., Zhang, L., Lu, G., Jiang, R., Yan, Z., and Li, Y. (2021). Occurrence, toxicity and ecological risk of bisphenol A analogues in aquatic environment: A review. Ecotoxicology and Environmental Safety, 208, 111481.

8.         Danzl, E., Sei, K., Soda, S., Ike, M., and Fujita, M. (2009). Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. International Journal of Environmental Research and Public Health, 6(4), 1472–1484.

9.         Lu, S., Yu, Y., Ren, L., Zhang, X., Liu, G., and Yu, Y. (2018). Estimation of intake and uptake of bisphenols and triclosan from personal care products by dermal contact. Science of the Total Environment, 621, 1389–1396.

10.      Farahin Mohd Ali, N., Sajid, M., Ibrahim Thani Abd Halim, W., Husaini Mohamed, A., Nadhirah Mohamad Zain, N., Kamaruzaman, S., Suhaila Mohamad Hanapi, N., Nazihah Wan Ibrahim, W., and Yahaya, N. (2023). Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchemical Journal, 184, 108158.

11.      Liu, R., Feng, F., Chen, G., Liu, Z., and Xu, Z. (2016). Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Analytical and Bioanalytical Chemistry, 408(19), 5329–5335.

12.      Usman, A., and Ahmad, M. (2016). From BPA to its analogues: Is it a safe journey? Chemosphere, 158, 131–142.

13.      Valentini, G., Caon, N. B., Faita, F. L., and Parize, A. L. (2023). Adsorption properties of magnetic CoFe₂O₄@SiO₂ decorated with P4VP applied to bisphenol A. Journal of the Brazilian Chemical Society, 34(2), 167–181.

14.      Ohore, O. E., and Songhe, Z. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems: A review. Scientific African, 5, e00135.

15.      Chen, L., He, Y., Lei, Z., Gao, C., Xie, Q., Tong, P., and Lin, Z. (2018). Preparation of core–shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum samples. Talanta, 181, 296–304.

16.      Kataria, N., Bhushan, D., Gupta, R., Rajendran, S., Teo, M. Y. M., and Khoo, K. S. (2022). Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. Environmental Pollution, 315, 120319.

17.      Xu, Q., Liu, X., Lai, D., Xing, Z., Ndagijimana, P., Li, Z., and Wang, Y. (2022). One-step synthesis of nanoscale zero-valent iron-modified hydrophobic mesoporous activated carbon for efficient removal of bulky organic pollutants. Journal of Cleaner Production, 356, 131854.

18.      Funari Junior, R. A., Frescura, L. M., de Menezes, B. B., and da Rosa, M. B. (2024). 4-Nonylphenol adsorption, environmental impact and remediation: A review. Environmental Chemistry Letters.

19.      Bagheri, A. R., and Shokrollahi, A. (2024). Recent trends in the use of silica-based materials and their composites in extraction techniques: A review. TrAC – Trends in Analytical Chemistry, 180, 117910.

20.      Tokula, B. E., Dada, A. O., Inyinbor, A. A., Obayomi, K. S., Bello, O. S., and Pal, U. (2023). Agro-waste-based adsorbents as sustainable materials for effective adsorption of bisphenol A from the environment: A review. Journal of Cleaner Production, 388, 135819.

21.      Abedpour, H., Moghaddas, J. S., Borhani, M. N., and Borhani, T. N. (2023). Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 53, 103676.

22.      Fatimah, I., Fadillah, G., Purwiandono, G., Sahroni, I., Purwaningsih, D., Riantana, H., Avif, A. N., and Sagadevan, S. (2022). Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. Inorganic Chemistry Communications, 137, 109213.

23.      Wamba, A. G. N., Kofa, G. P., Koungou, S. N., Thue, P. S., Lima, E. C., Dos Reis, G. S., and Kayem, J. G. (2018). Grafting of amine functional groups on silicate-based materials as adsorbents for water purification: A short review. Journal of Environmental Chemical Engineering, 6(2), 3192–3203.

24.      Cashin, V. B., Eldridge, D. S., Yu, A., and Zhao, D. (2018). Surface functionalization and manipulation of mesoporous silica adsorbents for improved removal of pollutants: A review. Environmental Science: Water Research and Technology, 4(2), 110–128.

25.      Speltini, A., Scalabrini, A., Maraschi, F., Sturini, M., and Profumo, A. (2017). Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Analytica Chimica Acta, 974, 1–26.

26.      Agrahari, R., Iqbal, K., Tyagi, J., Joshi, N. C., Shukla, S., Shukla, K., Varma, A., and Mishra, A. (2023). Diatoms in biomedicines and nanomedicines. In Diatoms (pp. 195–210). Springer.

27.      Mabidi, T. J., Izevbekhai, O. U., Gitari, W. M., Mudzielwana, R., and Ayinde, W. B. (2023). Preparation and characterization of acid-leached diatomaceous earth for application in the treatment of oily wastewater. Physics and Chemistry of the Earth, Parts A/B/C, 132, 103497.

28.      Jemai, R., Chalghaf, R., Boubakri, S., Djebbi, M. A., Naamen, S., Rhaiem, H. B., and Amara, A. B. H. (2024). Montmorillonite: Properties, characteristics, and its harnessing in environmental applications. In Recent Advances in Montmorillonite. IntechOpen.

29.      Zango, Z. U., Garba, A., Garba, Z. N., Zango, M. U., Usman, F., and Lim, J.-W. (2022). Montmorillonite for adsorption and catalytic elimination of pollutants from wastewater: A state-of-the-art review. Sustainability, 14(24), 16441.

30.      Khan, S., Ajmal, S., Hussain, T., and Rahman, M. U. (2023). Clay-based materials for enhanced water treatment: Adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences, 1, 1–16.

31.      Zeidman, A. B., Rodriguez-Narvaez, O. M., Moon, J., and Bandala, E. R. (2020). Removal of antibiotics in aqueous phase using silica-based immobilized nanomaterials: A review. Environmental Technology and Innovation, 20, 101030.

32.      Wang, B., Gao, X., Qiu, R., Chen, Y., Gao, Y., Hu, G., and Yu, D. (2025). Adsorption of PFCs and antibiotics from water using mesoporous silica and amino-functionalized mesoporous silicon materials: A review. Chemical Engineering Journal, 505, 159642.

33.      Liu, X., Hu, Y., Huang, J., and Wei, C. (2016). Detailed characteristics of adsorption of bisphenol A by highly hydrophobic MCM-41 mesoporous molecular sieves. Research on Chemical Intermediates, 42(9), 7169–7183.

34.      Brankovic, M., Zarubica, A., Andjelkovic, T., and Andjelkovic, D. (2017). Mesoporous silica (MCM-41): Synthesis/modification, characterization and removal of selected organic micropollutants from water. Advanced Technologies, 6(1), 50–57.

35.      Sacramento, R. A., Cysneiros, O. M. S., Silva, B. J. B., and Silva, A. O. S. (2019). Synthesis and characterization of mesoporous materials with SBA and MCM structure types. Cerâmica, 65(376), 585–591.

36.      Jin, Z., Xu, Y., Lin, S., and Sheng, J. (2016). Cubic mesoporous silica material as a highly efficient solid-phase extraction sorbent for bisphenol A and tert-nonylphenol from water. Journal of Nanoscience and Nanotechnology, 16(6), 5833–5838.

37.      Amarh, F. A., Kangmennaa, A., Agorku, E. S., and Voegborlo, R. B. (2024). A state-of-the-art review of trends in molecularly imprinted polymers in the clean-up of pesticides in environmental samples. Sustainable Environment, 10(1), 2298067.

38.      Jiang, X., Tian, W., Zhao, C., Zhang, H., and Liu, M. (2007). A novel sol–gel material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A. Talanta, 72(1), 119–125.

39.      Hu, X., Wu, X., Yang, F., Wang, Q., He, C., and Liu, S. (2016). Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta, 148, 29–36.

40.      Chen, J., Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a semi-covalent imprinting approach for the rapid and selective removal of bisphenols from environmental water samples. Water, 14(24), 4125.

41.      Gavrila, A. M., Radu, I. C., Stroescu, H., Zaharia, A., Stoica, E. B., Ciurlica, A. L., Iordache, T. V., and Sârbu, A. (2021). Role of functional monomers upon the properties of bisphenol A molecularly imprinted silica films. Applied Sciences, 11(7), 2956.

42.      Wang, Z., Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three functionalized silica adsorbents: Impact of co-immobilization of imidazole, phenyl and long-chain alkyl groups on bisphenol A adsorption from high-salt aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86, 120–132.

43.      Wang, H., Wang, D., Ren, W., and Tian, T. (2024). Effective adsorption of bisphenol A from water using cationic surfactant-modified natural kaolin minerals. Journal of Surfactants and Detergents, 27(3), 341–353.

44.      Rovani, S., Santos, J. J., Guilhen, S. N., Corio, P., and Fungaro, D. A. (2020). Fast, efficient and clean adsorption of bisphenol A using renewable mesoporous silica nanoparticles from sugarcane waste ash. RSC Advances, 10(46), 27706–27712.

45.      Orimolade, B. O., Adekola, A., Mohammed, A. A., Idris, A. O., Saliu, O. D., and Yusuf, T. (2018). Removal of bisphenol A from aqueous solution using rice husk nanosilica: Adsorption kinetics, equilibrium and thermodynamic studies. Journal of Applied Chemical Research, 12(1), 1–10.

46.      Jadhav, S. A., Garud, H. B., Patil, A. H., Patil, G. D., Patil, C. R., Dongale, T. D., and Patil, P. S. (2019). Recent advancements in silica nanoparticles based technologies for removal of dyes from water. Colloids and Interface Science Communications, 30, 100181.

47.      Zhou, J., Liu, C., Zhong, Y., Luo, Z., and Wu, L. (2024). A review of current developments in functionalized mesoporous silica nanoparticles: From synthesis to biosensing applications. Biosensors, 14(12), 575.

48.      Diagboya, P. N. E., and Dikio, E. D. (2018). Silica-based mesoporous materials: Emerging designer adsorbents for aqueous pollutants removal and water treatment. Microporous and Mesoporous Materials, 266, 252–267.

49.      Rajendran, A., Rajendiran, M., Yang, Z. F., Fan, H. X., Cui, T. Y., Zhang, Y. G., and Li, W. Y. (2020). Functionalized silicas for metal-free and metal-based catalytic applications: A review in perspective of green chemistry. Chemical Record, 20(6), 513–540.

50.      Sharma, P., Prakash, J., and Kaushal, R. (2024). Eco-friendly synthesis of amino- and carboxyl-functionalized silica nanoparticles for enhanced adsorption of water pollutants. Hybrid Advances, 6, 100209.

51.      Choong, C. E., Ibrahim, S., and Basirun, W. J. (2019). Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen. Journal of Colloid and Interface Science, 541, 12–17.

52.      Kim, Y. H., Lee, B., Choo, K. H., and Choi, S. J. (2014). Adsorption characteristics of phenolic and amino organic compounds on nano-structured silicas functionalized with phenyl groups. Microporous and Mesoporous Materials, 185, 121–129.

53.      Morin-Crini, N., Fourmentin, M., Fourmentin, S., Torri, G., and Crini, G. (2019). Synthesis of silica materials containing cyclodextrin and their applications in wastewater treatment. Environmental Chemistry Letters, 17(2), 683–696.

54.      Farmany, A., Mortazavi, S. S., and Mahdavi, H. (2016). Ultrasound-assisted synthesis of Fe₃O₄/SiO₂ core/shell with enhanced adsorption capacity for diazinon removal. Journal of Magnetism and Magnetic Materials, 416, 75–80.

55.      Dong, Y., Wu, D., Chen, X., and Lin, Y. (2010). Adsorption of bisphenol A from water by surfactant-modified zeolite. Journal of Colloid and Interface Science, 348(2), 585–590.

56.      Wu, X., Wang, X., Lu, W., Wang, X., Li, J., You, H., Xiong, H., and Chen, L. (2016). Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol A. Journal of Chromatography A, 1435, 30–38.

57.      Li, J., Zhou, Q., Wu, Y., Yuan, Y., and Liu, Y. (2018). Investigation of nanoscale zerovalent iron-based magnetic and thermal dual-responsive composite materials for the removal and detection of phenols. Chemosphere, 195, 472–482.

58.      Zhang, Z., Li, L., Wang, H., Guo, L., Zhai, Y., Zhang, J., Yang, Y., Wang, H., Yin, Z., and Lu, Y. (2018). Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples. Applied Surface Science, 448, 380–388.

59.      Inumaru, K. (2016). Roles of interfaces in nanostructured composites: Nanocatalysts, sponge crystals and thin films. Journal of the Ceramic Society of Japan, 124(10), 1110–1115.

60.      Yamaguchi, A., Namekawa, M., Kamijo, T., Itoh, T., and Teramae, N. (2011). Acid–base equilibria inside amine-functionalized mesoporous silica. Analytical Chemistry, 83(8), 2939–2946.

61.      Kim, Y. H., Lee, B., Choo, K. H., and Choi, S. J. (2011). Selective adsorption of bisphenol A by organic–inorganic hybrid mesoporous silicas. Microporous and Mesoporous Materials, 138(1–3), 184–190.

62.      Bhattarai, B., Muruganandham, M., and Suri, R. P. S. (2014). Development of high efficiency silica coated β-cyclodextrin polymeric adsorbent for the removal of emerging contaminants of concern from water. Journal of Hazardous Materials, 273, 146–154.

63.      Bucur, S., Diacon, A., Mangalagiu, I., Mocanu, A., Rizea, F., Dinescu, A., Ghebaur, A., Boscornea, A. C., Voicu, G., and Rusen, E. (2022). Bisphenol A adsorption on silica particles modified with beta-cyclodextrins. Nanomaterials, 12(1), 39.

64.      Zeeshan, M., Shah, J., Jan, M. R., and Iqbal, M. (2021). Removal of bisphenol A from aqueous samples using graphene oxide assimilated magnetic silica polyaniline composite. Journal of Inorganic and Organometallic Polymers and Materials, 31(5), 2073–2082.

65.      Cheng, F., and Wang, J. (2024). Removal of bisphenol A from wastewater by adsorption and membrane separation: Performances and mechanisms. Chemical Engineering Journal, 484, 149414.

66.      Ahmad, A. L., Chan, C. Y., Abd Shukor, S. R., and Mashitah, M. D. (2009). Adsorption kinetics and thermodynamics of β-carotene on silica-based adsorbent. Chemical Engineering Journal, 148(2–3), 378–384.

67.      Bibi, T., Ali, A., Alharthi, S., and Santali, E. Y. (2025). Efficient removal of bisphenol A from water using C18 functionalized silica-coated iron oxide nanoparticles. Journal of Nanoparticle Research, 27(1).

68.      Muhamad, M. S., Salim, M. R., Lau, W. J., Hadibarata, T., and Yusop, Z. (2016). Removal of bisphenol A by adsorption mechanism using PES–SiO₂ composite membranes. Environmental Technology, 37(15), 1959–1969.

69.      Afzan Mahmad, Ubaidah Noh, T., Shima Shaharun, M., and Uba Zango, Z. (2022). Adsorption and molecular docking study of bisphenol A using reusable ZIF-8 (Zn) metal–organic frameworks in an aqueous solution. Malaysian Journal of Analytical Sciences, 26(5), 965–975.

70.      Mourão, P., Cassavela, C., Cansado, I., Castanheiro, J., Ribeiro, L., and Pagnanelli, F. (2024). Adsorption of bisphenol A by granular activated carbon prepared with different silicates as binders. International Journal of Environmental Science and Technology, 21(4), 3719–3734.

71.      Yu, D., Hu, X., Wei, S., Wang, Q., He, C., and Liu, S. (2015). Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A. Journal of Chromatography A, 1396, 17–24.

72.      Chen, J., Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a semi-covalent imprinting approach for the rapid and selective removal of bisphenols from environmental water samples. Water, 14(24), 4135.

73.      Xu, L., Bai, T., Yi, X., Zhao, K., Shi, W., Dai, F., Wei, J., Wang, J., and Shi, C. (2023). Polypropylene fiber grafted calcium alginate with mesoporous silica for adsorption of bisphenol A and Pb²⁺. International Journal of Biological Macromolecules, 238, 124131.

74.      Zhu, G., Cheng, G., Lu, T., Cao, Z., Wang, L., Li, Q., and Fan, J. (2019). An ionic liquid functionalized polymer for simultaneous removal of four phenolic pollutants in real environmental samples. Journal of Hazardous Materials, 373, 347–358.

75.      Raza, S., Wen, H., Peng, Y., Zhang, J., Li, X., and Liu, C. (2021). Fabrication of SiO₂-modified biobased hydrolyzed hollow polymer particles and their applications in removal of methyl orange dye and bisphenol A. European Polymer Journal, 144, 110199.

76.      Wang, Z., Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three functionalized silica adsorbents: Impact of co-immobilization of imidazole, phenyl and long-chain alkyl groups on bisphenol A adsorption from high salt aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86, 120–132.

77.      Murphy, O. P., Vashishtha, M., Palanisamy, P., and Kumar, K. V. (2023). A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time. ACS Omega, 8(20), 17407–17430.

78.      Mahmad, A., Zango, Z. U., Noh, T. U., Usman, F., Aldaghri, O. A., Ibnaouf, K. H., and Shaharun, M. S. (2023). Response surface methodology and artificial neural network for prediction and validation of bisphenol A adsorption onto zeolite imidazole framework. Groundwater for Sustainable Development, 21, 100925.

79.      Gong, Y., Liu, G., Wang, Q., Zhu, A., Liu, P., and Wu, Q. (n.d.). Synthesis of a novel mesoporous Fe₃O₄@SiO₂/CTAB-SiO₂ composite material and its application in the efficient removal of bisphenol A from water.

80.      Chen, J., Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a semi-covalent imprinting approach for the rapid and selective removal of bisphenols from environmental water samples. Water, 14(24).

81.      Peng, J., Li, Y., Sun, X., Huang, C., Jin, J., Wang, J., and Chen, J. (2019). Controlled manipulation of metal–organic framework layers to nanometer precision inside large mesochannels of ordered mesoporous silica for enhanced removal of bisphenol A from water. ACS Applied Materials and Interfaces, 11(4), 4328–4337.

82.      Budnyak, T. M., Błachnio, M., Slabon, A., Jaworski, A., Tertykh, V. A., Deryło-Marczewska, A., and Marczewski, A. W. (2020). Chitosan deposited onto fumed silica surface as sustainable hybrid biosorbent for acid orange 8 dye capture: Effect of temperature in adsorption equilibrium and kinetics. Journal of Physical Chemistry C, 124(28), 15312–15323.

83.      Xu, L., Bai, T., Yi, X., Zhao, K., Shi, W., Dai, F., Wei, J., Wang, J., and Shi, C. (2023). Polypropylene fiber grafted calcium alginate with mesoporous silica for adsorption of bisphenol A and Pb²⁺. International Journal of Biological Macromolecules, 238, 124131.

84.      Liang, S., Ziyu, Z., Fulong, W., Maojuan, B., Xiaoyan, D., and Lingyun, W. (2022). Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal. Environmental Research, 205, 112529.

85.      Valentini, G., Caon, N. B., Faita, F. L., and Parize, A. L. (2023). Adsorption properties of magnetic CoFe₂O₄@SiO₂ decorated with P4VP applied to bisphenol A. Journal of the Brazilian Chemical Society, 34(2), 167–181.

86.      Wang, Z., Zhu, Y., Chen, H., Wu, H., and Ye, C. (2018). Fabrication of three functionalized silica adsorbents: Impact of co-immobilization of imidazole, phenyl and long-chain alkyl groups on bisphenol A adsorption from high salt aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 86, 120–132.

87.      Chen, J., Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a semi-covalent imprinting approach for the rapid and selective removal of bisphenols from environmental water samples. Water, 14(24).

88.      Prete, M. C., and Tarley, C. R. T. (2019). Bisphenol A adsorption in aqueous medium by investigating organic and inorganic components of hybrid polymer (polyvinylpyridine/SiO₂/APTMS). Chemical Engineering Journal, 367, 102–114.

89.      Teixeira, N. A., Miyazaki, D. M. S., Grassi, M. T., Zawadzki, S. F., and Abate, G. (2020). Application of a new adhesive elastomeric coating and hydrophilic–lipophilic-balanced sorbent for modified stir-bar sorptive extraction. Analytical Methods, 12(48), 5815–5822.

90.      Mohammadi, A. A., Dehghani, M. H., Mesdaghinia, A., Yaghmaian, K., and Es’haghi, Z. (2020). Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology. International Journal of Biological Macromolecules, 155, 1019–1029.

91.      Liang, S., Ziyu, Z., Fulong, W., Maojuan, B., Xiaoyan, D., and Lingyun, W. (2022). Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal. Environmental Research, 205(53), 112529.

92.      Mourão, P., Cassavela, C., Cansado, I., Castanheiro, J., Ribeiro, L., and Pagnanelli, F. (2024). Adsorption of bisphenol A by granular activated carbon prepared with different silicates as binders. International Journal of Environmental Science and Technology, 21(4), 3719–3734.

93.      Chen, J., Sun, X., Wang, M., Wang, Y., Wu, Q., Wu, S., and Fang, S. (2022). Preparation of magnetic dummy molecularly imprinted mesoporous silica nanoparticles using a semi-covalent imprinting approach for the rapid and selective removal of bisphenols from environmental water samples. Water, 14(24), 4135.

94.      Dura, A. M., Stefan, D. S., Chiriac, F. L., Trusca, R., Nicoara, A. I., and Stefan, M. (2023). Clinoptilolite—A sustainable material for the removal of bisphenol A from water. Sustainability, 15(17), 13253.

95.      de Farias, M. B., Silva, M. G. C., and Vieira, M. G. A. (2022). Adsorption of bisphenol A from aqueous solution onto organoclay: Experimental design, kinetic, equilibrium and thermodynamic study. Powder Technology, 395, 695–707.

96.      Yılmaz, Ş. (2022). Facile synthesis of surfactant-modified layered double hydroxide magnetic hybrid composite and its application for bisphenol A adsorption. Surfaces and Interfaces, 32, 102171.

97.      Tokuyama, H., Hamazaki, M., and Kubota, M. (2022). Temperature-swing adsorption of 4-isopropylphenol and bisphenol A onto a poly(N-isopropylacrylamide)/silica gel composite. Materials Today Communications, 33, 104755.

98.      Chatterjee, A., Jana, A. K., and Basu, J. K. (2020). A novel synthesis of MIL-53(Al)@SiO₂: An integrated photocatalyst adsorbent to remove bisphenol A from wastewater. New Journal of Chemistry, 44(43), 18892–18905.

99.      Hadoudi, N., Ahari, M., Zaki, N., Charki, A., El Ouarghi, H., Bayoussef, A., Mansori, M., Fouad, M., Salhi, A., and Amhamdi, H. (2024). Removal efficiency of phenolic compounds (bisphenol A and pentachlorophenol) by adsorption using a bentonite-CTAB. In Recent advances in montmorillonite (p. 13). IntechOpen.

100.   Fu, D., Zhang, Q., Chen, P., Zheng, X., Hao, J., Mo, P., Liu, H., Liu, G., and Lv, W. (2021). Efficient removal of bisphenol pollutants on imine-based covalent organic frameworks: Adsorption behavior and mechanism. RSC Advances, 11(30), 18308–18320.

101.   Nik Wee, N. N. A., Saleh, N. M., Devi, T., Samsuri, A., and Salleh, M. Z. M. (2023). Synthesis of silica from rice husk as coating material on magnetic nanoparticle for efficient adsorption of phenol from water samples. BioResources, 18(3), 6204–6220.

102.   Balarak, D., Mostafapour, F. K., Lee, S. M., and Jeon, C. (2019). Adsorption of bisphenol A using dried rice husk: Equilibrium, kinetic and thermodynamic studies. Applied Chemistry for Engineering, 30(3), 316–323.

103.   Ayazi, Z., and Matin, A. A. (2016). Development of carbon nanotube–polyamide nanocomposite-based stir bar sorptive extraction coupled to HPLC–UV applying response surface methodology for the analysis of bisphenol A in aqueous samples. Journal of Chromatographic Science, 54(10), 1841–1850.

104.   Zhang, G., Wo, R., Sun, Z., Hao, G., Liu, G., Zhang, Y., Guo, H., and Jiang, W. (2021). Effective magnetic MOFs adsorbent for the removal of bisphenol A, tetracycline, Congo red and methylene blue pollutions. Nanomaterials, 11(8), 1917.

105.   Yazid, H., Bouzid, T., El Himri, M., Regti, A., and El Haddad, M. (2024). Bisphenol A remediation using walnut shell as activated carbon employing experimental design for parameter optimization and theoretical study to establish the adsorption mechanism. Inorganic Chemistry Communications, 161, 112064.

106.   Wang, J., and Zhang, M. (2020). Adsorption characteristics and mechanism of bisphenol A by magnetic biochar. International Journal of Environmental Research and Public Health, 17(3), 1075.

107.   Hlekelele, L., Nomadolo, N. E., Setshedi, K. Z., Mofokeng, L. E., Chetty, A., and Chauke, V. P. (2019). Synthesis and characterization of polyaniline, polypyrrole and zero-valent iron-based materials for the adsorptive and oxidative removal of bisphenol A from aqueous solution. RSC Advances, 9(25), 14531–14543.

108.   Hadoudi, N., Amhamdi, H., and Ahari, M. (2021). Sorption of bisphenol A from aqueous solutions using natural adsorbents: Isotherm, kinetic and effect of temperature. E3S Web of Conferences, 314, 07003.

109.   Tie, L., Zhang, W. X., and Deng, Z. (2024). Composite hydrogel derived iron/nitrogen co-doped carbon for bisphenol A removal. Separation and Purification Technology, 340, 126752.

110.   Zafar, F. F., Barati, B., Rasoulzadeh, H., Sheikhmohammadi, A., Wang, S., and Chen, H. (2022). Adsorption kinetics analysis and optimization of bisphenol A onto magnetic activated carbon with shrimp shell-based precursor. Biomass and Bioenergy, 166, 106604.

111.   Kakavandi, B., Jahangiri-Rad, M., Rafiee, M., Esfahani, A. R., and Babaei, A. A. (2016). Development of response surface methodology for optimization of phenol and p-chlorophenol adsorption on magnetic recoverable carbon. Microporous and Mesoporous Materials, 231, 192–206.

112.   Yamada, K., Terada, S., Yamamoto, R., Anh, D. C., Naitou, T., and Yamamoto, S. (2024). Adsorptive removal of bisphenol A by polyethylene meshes grafted with an amino group-containing monomer, 2-(dimethylamino)ethyl methacrylate. Physchem, 4(4), 431–446.

113.   Cyran, J. D., Donovan, M. A., Vollmer, D., Brigiano, F. S., Pezzotti, S., Galimberti, D. R., Gaigeot, M. P., Bonn, M., and Backus, E. H. G. (2019). Molecular hydrophobicity at a macroscopically hydrophilic surface. Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1520–1525.

114.   Muhamad, M. S., Salim, M. R., Lau, W. J., and Yusop, Z. (2016). A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environmental Science and Pollution Research, 23(12), 11549–11567.

115.   Li, Q., Pan, F., Li, W., Li, D., Xu, H., Xia, D., and Li, A. (2018). Enhanced adsorption of bisphenol A from aqueous solution with 2-vinylpyridine functionalized magnetic nanoparticles. Polymers10(10), 1136.