Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1573

 

Review Article

 

Subcritical water extraction for phytochemicals from vegetables and vegetable waste: a review of recent advances

Nurul Faezawaty Jamaludin1,3, Rosnah Shamsudin1*, Muhammad Hazwan Hamzah2, Mohd Zuhair Mohd Nor1, Muhamad Yusuf Hasan3

 

1Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang, Selangor,

2SMART Farming Technology Research Centre, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Section of Food Engineering Technology, Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, 78000, Melaka, Malaysia

 

*Corresponding author: rosnahs@upm.edu.my

 

Received: 26 May 2025; Revised: 20 August 2025; Accepted: 24 September 2025; Published: 28 December 2025

 

This article was presented at the National Agricultural and Food Engineering Convention (NAFEC 2025), held on May 6–7, 2025. The event was organized by the Malaysian Society of Agricultural and Food Engineers, with Muhammad Hazwan Hamzah serving as Guest Editor.

 

Abstract

Subcritical Water Extraction (SWE) has emerged as an innovative and sustainable technique for extracting valuable phytochemicals from vegetables. Under subcritical water conditions, by which operating water at elevated temperatures and pressures below its critical point, SWE enhances its ability to dissolve a broad spectrum of bioactive compounds, including polar substances like glucosinolates and phenolic acids, as well as nonpolar compounds such as flavonoids and carotenoids. Compared to conventional solvent-based methods, this green extraction approach has the benefit of higher efficiency in extraction and reduced environmental impact, along with lower capital costs. SWE has been successfully applied to recover important phytochemicals, such as sulforaphane from broccoli and quercetin from kale. Extraction yields and phytochemical stability are influenced by factors including types of plant, temperature, pressure, solid-to-solvent ratio, extraction time, and pH conditions. The valourisation of vegetable waste materials like carrot peels, cauliflower stems make SWE align towards circular economy principles. Despite scaling up challenges, as generally seen in equipment design and energy consumption, SWE has a huge potential for broad industrial use in areas of food, nutraceutical, pharmaceutical and cosmetic. This review focuses on recent advances, the synergistic effects, environmental and economic merits of the SWE technology and is followed by its prospects in this field.

 

Keywords: subcritical water extraction, phytochemicals, vegetables, green extraction

 


       References

1.          Sharma, M., and Kaushik, P. (2021). Vegetable phytochemicals: An update on extraction and analysis techniques. Biocatalysis and Agricultural Biotechnology, 36, 102149.

2.          Sarker, U., Islam, M. T., Rabbani, M. G., and Oba, S. (2018). Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth. Journal of Integrative Agriculture, 17(5), 1145–1153.

3.          Chakrabarty, T., Sarker, U., Hasan, M., and Rahman, M. (2018). Variability in mineral compositions, yield and yield contributing traits of stem amaranth (Amaranthus lividus). Genetika, 50(3), 995–1010.

4.         Forni, C., Facchiano, F., Bartoli, M., Pieretti, S., Facchiano, A., D’Arcangelo, D., Norelli, S., Valle, G., Nisini, R., Beninati, S., Tabolacci, C., and Jadeja, R. N. (2019). Beneficial role of phytochemicals on oxidative stress and age- related diseases. BioMed Research International, 2019, 1–16.

5.         Suyal, K., Dhali, S., Ojha, A., and Pant, N. (2022). Polyphenols: The pharmaceutical approach and international health. Journal of Biomedical and Pharmaceutical Research, 11(5): 923.

6.         Da Silva, R. P., Rocha-Santos, T. A., and Duarte,

A. C. (2015). Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry, 76, 40–51.

7.         Roy, M., Datta, A., Roy, M., and Datta, A. (2019).  Fundamentals  of  phyto chemicals. Cancer genetics and therapeutics: focus on phytochemicals, 49-81.

8.         Cuevas-Cianca, S. I., Romero-Castillo, C., Gálvez-Romero, J. L., Juárez, Z. N., and Hernández, L. R. (2023). Antioxidant and anti- inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs. Molecules, 28(3), 1488.

9.         Olaiya, C. O., Soetan, K. O., and Esan, A. M. (2016). The role of nutraceuticals, functional foods and value added food products in the prevention and treatment of chronic diseases. African  Journal  of  Food Science, 10(10), 185-193.

10.      Chemat, F., Abert Vian, M., Ravi, H. K., Khadhraoui, B., Hilali, S., Perino, S., and Fabiano Tixier, A. S. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules, 24(16), 3007.

11.      Antony, A., and Farid, M. (2022). Effect of temperatures on polyphenols during extraction. Applied Sciences, 12(4), 2107.

12.      Zhang, J., Wen, C., Zhang, H., Duan, Y., and Ma,

H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science and Technology, 95, 183-195.

13.      Cheng, Y., Xue, F., Yu, S., Du, S., and Yang, Y. (2021). Subcritical water extraction of natural products. Molecules, 26(13), 4004.

14.      Valisakkagari, H., Chaturvedi, C., and Rupasinghe, H. P. V. (2024). Green extraction of phytochemicals from fresh vegetable waste and their potential application as cosmeceuticals for skin health. Processes, 12(4), 742.

15.      Munir, M., Kheirkhah, H., Baroutian, S., Quek, S. Y., and Young, B. R. (2018). Subcritical water extraction of bioactive compounds from waste onion skin. Journal of Cleaner Production, 183, 487–494.

16.    Wiboonsirikul, J., and Adachi, S. (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Science and Technology Research, 14(4), 319–328.

17.    Gbashi, S., Adebo, O. A., Piater, L. A., Madala,

N. E., and Njobeh, P. B. (2017). Subcritical water extraction of biological materials. Separation and Purification Reviews, 46(1), 21–34.

18.    Ko, M. J., Nam, H. H., and Chung, M. S. (2020). Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Scientific reports, 10(1), 10890.

19.    Haghighi, A., and Khajenoori, M. (2013). Subcritical water extraction. In Mass transfer - Advances in sustainable energy and environment oriented numerical modelling. InTech Publication.

20.    Cacace, J., and Mazza, G. (2005). Pressurized low polarity water extraction of lignans from whole flaxseed. Journal of Food Engineering, 77(4), 1087–1095.

21.    Ozel, M. Z., and Göğüş, F. (2014). subcritical water as a green solvent for plant extraction. Springer Berlin Heidelberg, (pp. 73–89).

22.    Speight J.G., (2005). Lange's Handbook of Chemistry, McGraw-Hill New York, p. 24.

23.    Kronholm, J., Hartonen, K., Riekkola, M.-L., (2007). Analytical extractions with water at elevated temperatures and pressures. TrAC Trends in Analytical Chemistry 26(5), 396 –412.

24.    Zhang, X. (2015). Subcritical Water Extraction Technology and Application on Natural Active Ingredients. Food Research and Development, 2015:132-136.

25.    Ho, B. C. H., Kamal, S. M. M., Danquah, M. K., and Harun, R. (2018). Optimization of subcritical water extraction (SWE) of lipid and eicosapentaenoic                        acid           (EPA) from Nannochloropsis gaditana. Biomedical Research International, 2018, 1–11.

26.    Song, R., Ismail, M., Baroutian, S., and Farid, M. (2018). Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food and Bioprocess Technology, 11(10), 1895–1903.

27.    Nastić, N., Švarc-Gajić, J., Delerue-Matos, C., Barroso, M. F., Soares, C., Moreira, M. M., ... and Radojković, M. (2018). Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products, 111, 579–589.

28.    Gbashi, S., Madala, N. E., Adebo, O. A., Piater, L., Phoku, J. Z., and Njobeh, P. B. (2017). Subcritical water extraction and its prospects for aflatoxins extraction in biological materials. In Aflatoxin-control, analysis, detection and health risks. InTech Publication.

29.    Anoraga, S. B., Shamsudin, R., Hamzah, M. H., Sharif, S., and Saputro, A. D. (2024). Cocoa by- products: A comprehensive review on potential uses, waste management, and emerging green technologies for cocoa pod husk utilization. Heliyon. Elsevier Ltd.

30.    Gallego, R., Bueno, M., and Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by- products, seaweeds and microalgae – An update. TrAC Trends in Analytical Chemistry, 116, 198–213.

31.    Khajenoori, M., Asl, A. H., Hormozi, F., Eikani, M., and Bidgoli, H. N. (2008). Subcritical water extraction of essential oils from Zataria Multiflora Boiss. Journal of Food Process Engineering, 32(6), 804–816.

32.    Jiménez-Carmona, M. M., Ubera, J. L., and Luque de Castro, M. D. (1999). Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil. Journal of Chromatography. A, 855(2), 625–632.

33.    Yadav, S., Malik, K., Moore, J. M., Kamboj, B. R., Malik, S., Malik, V. K., Arya, S., Singh, K., Mahanta, S., and Bishnoi, D. K. (2024). Valorisation of agri-food waste for bioactive compounds: recent trends and future sustainable challenges. Molecules, 29(9), 2055.

34.    Aminzai, M. T., Yabalak, E., Akay, S., and Kayan,

B. (2024). Recent developments in subcritical water extraction of industrially important bioactive substances from plants, microorganisms, and organic wastes. Biomass Conversion and Biorefinery, 15(12), 17927- 17949.

35.    Fernández-Pérez, V., Jiménez-Carmona, M. M., and Luque De Castro, M. D. (2001). Continuous liquid–liquid extraction using modified subcritical water for the demetalisation of used industrial oils. Analytica Chimica Acta, 433(1), 47–52.

36.    Xu, S., Fang, D., Tian, X., Xu, Y., Zhu, X., Wang, Y., Lei, B., Hu, P., and Ma, L. (2021). Subcritical water extraction of bioactive compounds from waste cotton (Gossypium hirsutum L.) flowers. Industrial Crops and Products, 164, 113369.

37.    Ju, Z., and Howard, L. R. (2006). Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science, 70(4), S270–S276.

38.    Chemat, F., Vian, M. A., and Cravotto, G. (2012). Green extraction of natural products: concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627.


39.    Li, B., Akram, M., Al-Zuhair, S., Elnajjar, E., and Munir, M. T. (2020). Subcritical water extraction of phenolics, antioxidants and dietary fibres from waste date pits. Journal of Environmental Chemical Engineering, 8(6), 104490.

40.    Zhang, M., Zhao, J., Dai, X., and Li, X. (2023). Extraction and analysis of chemical compositions of natural products and plants. Separations, 10(12), 598.

41.    Gan, A., and Baroutian, S. (2022). Current status and trends in extraction of bioactives from brown macroalgae using supercritical CO2 and subcritical water. Journal of Chemical Technology and Biotechnology, 97(8), 1929– 1940.

42.    Tan, P.W., Tan C.P., Ho, C.W. (2011). Antioxidant properties: effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). International Food Research Journal, 18, pp. 557-562

43.    Mikucka, W., Zielinska, M., Bulkowska, K., and Witonska, I. (2022). Subcritical water extraction of bioactive phenolic compounds from distillery stillage. Journal of Environmental Management, 318, 115548.

44.    Predescu, N. C., Papuc, C., Gajaila, I., and Goran,

G. V. (2017). The influence of solid-to-solvent ratio and extraction method on total phenolic content, flavonoid content and antioxidant properties of some ethanolic plant extracts. Revista de Chimie.67(10):1922-1927

45.    Letellier, M., and Budzinski, H. (1999). Microwave assisted extraction of organic compounds. Analusis, 27(3), 259–270.

46.    Nastić, N., Švarc-Gajić, J., Delerue-Matos, C., Barroso, M. F., Soares, C., Moreira, M. M., Morais, S., Mašković, P., Srček, V. G., Slivac, I., Radošević, K., and Radojković, M. (2017). Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Industrial Crops and Products, 111, 579–589.

47.    Xiao, J. (2022). Recent advances on the stability of dietary polyphenols. eFood, 3(3), 21.

48.    Wang, M., Zhang, H., Yi, L., Högger, P., Arroo, R., Bajpai, V. K., Prieto, M., Simal-Gandara, J., Wang, S., and Cao, H. (2021). Stability and antioxidant capacity of epigallocatechin gallate in Dulbecco’s modified eagle medium. Food Chemistry, 366, 130521.

49.    Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte-Junior, C. A., Gonzalez- Aguilar, G. A., Ou, J., Bai, W., Zamarioli, C. M., Freitas, L. A. P., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M., Xiao, J. (2021). Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2(2), 109–139.

50.    Oancea, S. (2021). A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants, 10(9), 1337

51.    Kanmaz, E. Ö. (2014). Subcritical water extraction of phenolic compounds from flaxseed meal sticks using accelerated solvent extractor (ASE). European Food Research and Technology, 238(1), 85–91.

52.    Septembre-Malaterre, A., Boumendjel, A., Seteyen, A. S., Boina, C., Gasque, P., Guiraud, P., and Sélambarom, J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus, 2(1), 100220.

53.    Giovannucci, E. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. CancerSpectrum Knowledge Environment, 94(5), 391–398.

54.    Bayan, L., Koulivand, P. H., and Gorji, A. (2014). Garlic: a review of potential therapeutic effects. Avicenna Journal of Phytomedicine, 4(1), 1–14.

55.    Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., and Itakura, Y. (2001). Intake of garlic and its bioactive components. Journal of Nutrition, 131(3), 955S-962S.

56.    Zhao, L., Wang, J., Dai, W., Du, M., Dai, X., Zhou, Z., He, H., Yuan, B., Zhao, D., and Cao, Q. (2024). Comprehensive characterization of nutritional components in sweet potato (Ipomoea batatas [L]. Lam.) during long-term post-harvest storage. Journal of Plant Physiology, 304, 154404.

57.    Iahtisham-Ul-Haq, S., Khan, S., Awan, K. A., and Iqbal, M. J. (2022). Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. Journal of Food Biochemistry, 46(3), 13886.

58.    Clifford, T., Howatson, G., West, D., and Stevenson, E. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822.

59.    Slimestad, R., Fossen, T., and Vågen, I. M. (2007). Onions: A source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry, 55(25), 10067–10080.

60.    Gudiño, I., Martín, A., Casquete, R., Prieto, M., Ayuso, M., and Córdoba, M. (2022). Evaluation of broccoli (Brassica oleracea var. italica) crop by-products as sources of bioactive compounds. Scientia Horticulturae, 304, 111284.

61. Ko, M.-J., Nam, H.-H., and Chung, M.-S. (2020).

Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Scientific Reports, 10(1), 10890.

62.    Benito-Román, Ó., Blanco, B., Sanz, M. T., and Beltrán, S. (2020). Subcritical water extraction of phenolic compounds from onion skin wastes (Allium cepa cv. Horcal): Effect of temperature and solvent properties. Antioxidants, 9(12), 1233.

63.    Ozcan, H., and Damar, I. (2023). Valorization of spinach roots for recovery of phenolic compounds by ultrasound-assisted extraction: characterization, optimization, and bioaccess ibility. European Food Research and Technology, 249(7), 1899–1913.

64.    Gudiño, I., Martín, A., Casquete, R., Prieto, M. H., Ayuso, M. C., and Córdoba, M. G. (2022). Evaluation of broccoli (Brassica oleracea var. italica) crop by-products as sources of bioactive compounds. Scientia Horticulturae, 304, 111284.

65.    Amofa-Diatuo, T., Anang, D. M., Barba, F. J., and Tiwari, B. K. (2016). Development of new apple beverages rich in isothiocyanates by using extracts obtained from ultrasound-treated cauliflower by-products: Evaluation of physical properties and consumer acceptance. Journal of Food Composition and Analysis, 61, 73–81.

66.    Soares, D. P. (2021). Valorization of tomato waste with subcritical water extraction. Master's thesis, Universidade NOVA de Lisboa, Portugal).

67.    Dehkharghanian, M., Adenier, H., and Vijayalakshmi, M. A. (2010). Study of flavonoids in aqueous spinach extract using positive electrospray ionisation tandem quadrupole mass spectrometry. Food Chemistry, 121(3), 863–870.

68.    Nemzer, B., Al-Taher, F., and Abshiru, N. (2021). Extraction and natural bioactive molecules characterization in spinach, kale and purslane: a comparative study. Molecules, 26(9), 2515.

69.    Višnjevec, A. M., Barp, L., Lucci, P., and Moret,

S. (2024). Pressurized liquid extraction for the determination of bioactive compounds in plants with emphasis on phenolics. TrAC Trends in Analytical Chemistry, 173, 117620.

70.    Sharma, A., Devi, L., Swamy, M. K., and Pandey,

D. K. (2024). Extraction of capsaicin and related compounds by using conventional and contemporary technologies. In Capsaicinoids (pp. 113–128).

71.    Song, R., Ismail, M., Baroutian, S., and Farid, M. (2018). Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food and Bioprocess Technology, 11(10), 1895–1903.

72.    Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., and Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 21(7), 901.

73.    Asl, A.H., Khajenoori, M., (2013). Subcritical water extraction. In: mass transfer advances in sustainable energy and environment oriented numerical modeling. InTech, Rijeka, pp. 459–487.

74.    Deng, Q., Zinoviadou, K. G., Galanakis, C. M., Orlien, V., Grimi, N., Vorobiev, E., Lebovka, N., and Barba, F. J. (2014). The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation, and applications. Food Engineering Reviews, 7(3), 357–381.

75.    Sharma, I., Khare, N., and Rai, A. (2024). Carotenoids: Sources, bioavailability and their role in human nutrition. IntechOpen.

76.    Plaza, M., and Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39–54.

77.    González, F., Quintero, J., Del Río, R., and Mahn,

A.  (2021). Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica). Molecules, 26(13), 4042.

78.    Ganai, S. A. (2016). Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomedicine and Pharmacotherapy, 81, 250-257.

79.    Jeffery, E., Brown, A., Kurilich, A., Keck, A., Matusheski, N., Klein, B., and Juvik, J. (2003). Variation in content of bioactive components in broccoli. Journal of Food Composition and Analysis, 16(3), 323–330.

80.    Zhang, C., Su, Z.-Y., Khor, T. O., Shu, L., and Kong, A.-N. T. (2013). Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochemical Pharmacology, 85(9), 1398–1404

81.    Kallifatidis, G., Labsch, S., Rausch, V., Mattern, J., Gladkich, J., Moldenhauer, G., Büchler, M. W., Salnikov, A. V., and Herr, I. (2011). Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Molecular Therapy, 19(1), 188–195.

82.    Zaini, A. S., Putra, N. R., Idham, Z., Faizal, A. N. M., Yunus, M. A. C., Mamat, H., and Aziz, A. H.

A.   (2022). Comparison of alliin recovery from Allium sativum L. using soxhlet extraction and subcritical water extraction. ChemEngineering, 6(5), 73.

83.    Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blümmel, M., Weiss, F., Grace, D., and Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 110(52), 20888–20893.

84.    Teo, C.C., Tan, S.N., Yong, J.W.H., Hew, C.S., and Ong, E.S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217(16), 2484-2494.

85.    Mustafa, A., and Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18.

86.    Ong, E. S., Cheong, J. S., and Goh, D. (2006). Pressurized hot water extraction of bioactive or marker compounds in botanicals and medical plant materials. Journal of Chromatography A, 1112(1-2), 92–102.

87.    Zhang, QW., Lin, LG. and Ye, WC. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13, 20.

88.    Ibañez, E., Herrero, M., Mendiola, J.A., Castro- Puyana, M. (2012). Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In: Hayes, M. (eds) Marine Bioactive Compounds. Springer.

89.    Rodríguez-Meizoso, I., Castro-Puyana, M., Börjesson, P., Mendiola, J. A., Turner, C., and Ibáñez, E. (2012). Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. The Journal of Supercritical Fluids, 72, 205–212.

90.    Bitwell, C., Indra, S. S., Luke, C., and Kakoma, M.  K.  (2023). A  review  of  modern  and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585.

91.    Basak, S., and Annapure, U. S. (2022). The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Research International, 161, 111849.

92.    Thiruvenkadam, S., Izhar, S., Yoshida, H., Danquah, M. K., and Harun, R. (2015). Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Applied Energy, 154, 815–828.

93.    Abdelmoez, W., Nage, S. M., Bastawess, A., Ihab, A., and Yoshida, H. (2014). Subcritical water technology for wheat straw hydrolysis to produce value added products. Journal of Cleaner Production, 70, 68–77.

94.    Agregán, R., Pateiro, M., Kumar, M., Echegaray, N., Piedra, R. B., and Campagnol, P. C. B. (2024). Subcritical and supercritical fluid extraction of bioactive compounds. In Elsevier eBooks (pp. 57–93).

95.    Cravotto, G. (2025). Reshaping chemical manufacturing towards green process intensification: Recent findings and perspectives. Processes, 13(2), 459.