Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1517

 

Research Article

 

Development of modified polyaniline-pencil graphite electrode (PANI/PGE) as a corrosion electrochemical sensor for the voltammetric detection of Fe2+ ions

 

Amalia Najihah Mahzan1, Hairul Hisham Hamzah2, Mohd Azam Osman3, Siti Fatimah Nur Abdul Aziz1*, and   M. Hazwan Hussin1*

 

1Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

2School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, England, United Kingdom

3School of Computer Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

*Corresponding author: mhh@usm.my; fatimahnuraa@usm.my

 

Received: 17 March 2025; Revised: 9 September 2025; Accepted: 24 September 2025; Published: 28 December 2025

 

Abstract

This study has developed a pencil graphite electrode (PGE), modified with polyaniline (PANI), to serve as a simple, selective, and sensitive electrochemical sensor for the voltammetric detection of Fe2+ ions, specifically for quantifying iron in corrosion studies. The modification of PANI on the PGE (PANI/PGE) was performed through electropolymerization process by cyclic voltammetry (CV) in a potential range of –1 V to 1 V at a scan rate of 100 mV/s for 20 cycles. The active surface area was calculated to increased by 35% upon the modification. The CV and potentiodynamic polarization were utilized to study the anodic behaviour of the Fe2+ ions. The PANI/PGE exhibited good electrocatalytic activity and significantly enhanced peak current ratio of approximately 1.83 compared to the bare PGE, making it effective for determining the corrosion rate of mild steel. Parameters including electroactive surface area, the effect of scan rate, and sensitivity were investigated. The cyclic voltammogram of the PANI/PGE showed a good linearity in the concentration range 0.005 M to 0.05 M with the detection limit of of 1 ×10-2 M and quantification limit of 3×10-2 M. Notably, the PANI/PGE electrode demonstrated a higher detection of Fe2+ ions compared to the bare PGE electrode. Specifically, at 7 days, the current for the PANI/PGE electrode increased by 48%, while at 35 days, it increased by 32%, highlighting the enhanced performance of the modified electrode. The development of the modified PGE as an electrochemical sensor for detecting corrosion in mild steel has been successfully achieved. This study underscores the enhanced sensitivity and selectivity of the PANI-modified PGE, showcasing its potential for efficient on-site detection by quantifying Fe2+ ions in corrosion samples.

 

Keywords: mild steel; cyclic voltammetry; electrochemical sensor; pencil graphite electrode

 


References

1.         Eivaz Mohammadloo, H., Mirabedini, S., and Pezeshk-Fallah, H. (2019). Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti-corrosion, morphology and adhesion study. Progress in Organic Coatings, 137: 105339.

2.         Olasunkanmi, L. O., and Ebenso, E. E. (2020). Experimental and computational studies on propanone derivatives of quinoxalin-6-yl-4,5-dihydropyrazole as inhibitors of mild steel corrosion in hydrochloric acid. Journal of Colloid and Interface Science, 561: 104-116.

3.         Berrissoul, A., Ouarhach, A., Benhiba, F., Romane, A., Zarrouk, A., Guenbour, A., Dikici, B., and Dafali, A. (2020). Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach. Journal of Molecular Liquids, 313: 113493.

4.         Komary, M., Komarizadehasl, S., Tošić, N., Segura Pérez, I., Lozano-Galant, J.A., and Turmo, J. (2023). Low-cost technologies used in corrosion monitoring. Sensors, 23(3): 1309.

5.         Dhole, G., Gunasekaran, G., Ghorpade, T., and Vinjamur, M. (2017). Smart acrylic coatings for corrosion detection. Progress in Organic Coatings, 110: 140–149.

6.         Acar, Ö., and Yaşar, C.F. (2024). Developments in smart wall-climbing robots for corrosion inspection. Multimedia Tools and Applications: 1-23.

7.         Mejri, A., Mandriota, G., Hamza, E., Curri, M.L., Ingrosso, C., and Mars, A. (2023). Pencil graphite electrocatalytic sensors modified by pyrene coated reduced graphene oxide. Molecules, 28(21) : 7311.

8.         Goldoni, R., Vieira Thomaz, D., Ottolini, M., Di Giulio, S., and Di Giulio, T. (2024). Characterization of in situ electrosynthesis of polyaniline on pencil graphite electrodes. Journal of Materials Science, 59: 10287-10308.

9.         Wu, Y., Gao, X., and Li, Y. (2024). Electrochemical sensors based on polyaniline nanocomposites for detecting Cd (II) in wastewater. International Journal of Electrochemical Science, 19(3): 100519.

10.      Kumar, A., Sharma, S., Tripathi, C. S. P., & Guin, D. (2024). 2‐dimensional magnesium oxide/polyaniline nanocomposite modified glassy carbon electrode for electrochemical detection of dopamine and 4nitrophenol. ChemistrySelect, 9(9): e202304435.

11.      Selvaraj, R., Ganesan, S., and  Balachandravinayagam, E. (2024). Development of modified pencil graphite electrode sensors by using polyaniline and polypyrrole based hydrogels. Oriental Journal of Chemistry, 40(5).

12.      ÖZcan, A., Gürbüz, M., and ÖZcan, A. A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta, 187: 125-132.

13.      Yaacob, S. F. F. S., Din, S. N. M., and Suah, F. B. M. (2024). Ascorbic acid sensor using modified pencil graphite electrodes: A preliminary study. Russian Journal of Electrochemistry, 60(5): 392-399.

14.      Özcan, A., İlkbaş, S., and Özcan, A. A. (2017). Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta, 165: 489-495.

15.      Goldoni, R., Thomaz, D. V., Ottolini, M., Di Giulio, S., and Di Giulio, T. (2024). Characterization of in situ electrosynthesis of polyaniline on pencil graphite electrodes through electrochemical, spectroscopical and computational methods. Journal of Materials Science, 59(23): 10287-10308.

16.      Maheshwaran, M., and Kumar, K. K. S. (2024). DFT and electrochemical determination of Hg2+ and Pb2+ in water using polyaniline–quinoxaline composite modified GCE electrode. Journal of Molecular Liquids, 398: 124317.

17.      Zhang, Z., Ye, H., Dan, Y., Duanmu, Z., Li, Y., and Deng, J. (2020). Novel method for comprehensive corrosion evaluation of grounding device. IEEE Access, 8: 72102–72111.

18.      Eltai, E. O., Musharavati, F., and Mahdi, E. S. (2019). Severity of corrosion under insulation (CUI) to structures and strategies to detect it. Corrosion Reviews, 37(6): 553-564.

19.      Steel, C. T. (2004). Method 1110A: Corrosivity toward steel. Test methods for evaluating solid waste, physical/chemical methods. U.S. Environmental Protection Agency.

20.      Korent, A., ŽAgar Soderžnik, K., ŠTurm, S., and Žužek Rožman, K. (2020). A correlative study of polyaniline electropolymerization and its electrochromic behavior. Journal of The Electrochemical Society, 167(10): 106504.

21.      Singh, N., Singh, P. K., Singh, M., Tandon, P., Singh, S. K., and Singh, S. (2019). Fabrication and characterization of polyaniline, polyaniline/MgO (30%) and polyaniline/MgO (40%) nanocomposites for their employment in LPG sensing at room temperature. Journal of Materials Science: Materials in Electronics, 30: 4487-4498.

22.      Vadiraj, K. T., and Belagali, S. (2015). Characterization of polyaniline for optical and electrical properties. IOSR Journal of Applied Chemistry, 8(1): 53-56.

23.      Keyhanpour, A., Seyed Mohaghegh, S. M., and Jamshidi, A. (2012). Electropolymerization and characterization of polyaniline, poly(2-anilinoethanol) and poly(aniline-co-2-anilinoethanol). Iranian Polymer Journal, 21: 307-315.

24.      Ajeel, K. I., and Kareem, Q. S. (2019). Synthesis and characteristics of polyaniline (PANI) filled by graphene (PANI/GR) nano-films. Journal of Physics: Conference Series, 1234: 012020.

25.      Mazzeu, M. A. C., Faria, L. K., Baldan, M. R., Rezende, M. C., and Gonçalves, E. S. (2018). Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale. Brazilian Journal of Chemical Engineering, 35(1): 123-130.

26.      Qin, Q., Tao, J., and Yang, Y. (2010). Preparation and characterization of polyaniline film on stainless steel by electrochemical polymerization as a counter electrode of DSSC. Synthetic Metals, 160(11-12): 1167-1172.

27.      Beygisangchin, M., Abdul Rashid, S., Shafie, S., Sadrolhosseini, A. R., and Lim, H. N. (2021). Preparations, properties, and applications of polyaniline and polyaniline thin films - A review. Polymers, 13(12): 2003.

28.      Majeed, A. H., Mohammed, L. A., Hammoodi, O. G., Sehgal, S., Alheety, M. A., Saxena, K. K., Dadoosh S.A., Mohammed I.K., Jasim M.M. and Salmaan, N. U. (2022). A review on polyaniline: synthesis, properties, nanocomposites, and electrochemical applications. International Journal of Polymer Science, 2022(1): 9047554.

29.      Purushothama, H., and Arthoba Nayaka, Y. (2019). Pencil graphite electrode based electrochemical system for the investigation of antihypertensive drug hydrochlorothiazide: An electrochemical study. Chemical Physics Letters, 734: 136718.

30.      de França, C. C. L., Meneses, D., Silva, A. C. A., Dantas, N. O., de Abreu, F. C., Petroni, J. M., and Lucca, B. G. (2021). Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochimica Acta, 367: 137486.

31.      Sari, R. M. C., Marlin, E., and Hartati, Y. W. (2019). Penentuan besi (III) secara voltammetri menggunakan elektrode grafit pensil. Chimica et Natura Acta, 7(3): 138-146.

32.      Ismail, R., Šeděnková, I., Černochová, Z.,  Romanenko, I., Pop-Georgievski, O., Hrubý, M., and Tomšík, E. (2022). Potentiometric performance of ion-selective electrodes based on polyaniline and chelating agents: detection of Fe2+ or Fe3+ ions. Biosensors, 12(7): 446.

33.      Radhi, M. M., Mossa, A. A., Al-Mulla, E. A. J., and Lafta, A. N. (2022). Electrochemical study of modified glassy carbon electrode with polyaniline nanoparticles using cyclic voltammetry. Bulletin of the Chemical Society of Ethiopia, 36(3), 687-696.

34.      AlAqad, K. M., Suleiman, R., al Hamouz, O. C. S., and Saleh, T. A. (2018). Novel graphene modified carbon-paste electrode for promazine detection by square wave voltammetry. Journal of Molecular Liquids, 252: 75-82.

35.      Emmanuel, J. K. (2024). Corrosion protection of mild steel in corrosive media, a shift from synthetic to natural corrosion inhibitors: a review. Bulletin of the National Research Centre, 48(1): 26.

36.      Sodiki, J. I., Ndor, M. V., and Sodiki, A. (2016). A note on the modeling of corrosion rates of mild steel, medium carbon steel, brass, and aluminum. European Journal of Engineering and Technology, 4(3): 8-10.

37.      Abdar, P. S., Hariri, M. B., Kahyarian, A., and Nesic, S. (2021). A revision of mechanistic modeling of mild steel corrosion in H2S environments. Electrochimica Acta, 382: 138231.

38.      Yang, J., Lu, Y., Guo, Z., Gu, J., and Gu, C. (2018). Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corrosion Science, 130: 64-75.