Malays. J. Anal. Sci. Volume 29 Number 6 (2025): 1517
Research Article
Development of modified polyaniline-pencil graphite electrode
(PANI/PGE) as a corrosion electrochemical sensor for the voltammetric detection
of Fe2+ ions
Amalia Najihah Mahzan1, Hairul Hisham Hamzah2,
Mohd Azam Osman3, Siti Fatimah Nur Abdul Aziz1*, and M. Hazwan Hussin1*
1Materials Technology Research
Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800
Minden, Penang, Malaysia
2School of Health and Life
Sciences, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, England,
United Kingdom
3School of Computer Sciences,
Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
*Corresponding author: mhh@usm.my;
fatimahnuraa@usm.my
Received: 17 March 2025;
Revised: 9 September 2025; Accepted: 24 September 2025; Published: 28 December
2025
Abstract
This study has developed a pencil graphite electrode (PGE), modified with
polyaniline (PANI), to serve as a simple, selective, and sensitive electrochemical sensor for
the voltammetric detection of Fe2+ ions, specifically for
quantifying iron in corrosion studies. The modification of PANI on the PGE
(PANI/PGE) was performed through electropolymerization process by cyclic
voltammetry (CV) in a potential range of –1 V to 1 V at a scan rate of 100 mV/s
for 20 cycles. The active surface area was calculated to increased by 35% upon
the modification. The CV and potentiodynamic polarization were utilized to
study the anodic behaviour of the Fe2+ ions. The PANI/PGE
exhibited good electrocatalytic activity and significantly enhanced peak
current ratio of approximately 1.83 compared to the bare PGE, making it
effective for determining the corrosion rate of mild steel. Parameters
including electroactive surface area, the effect of scan rate, and sensitivity
were investigated. The cyclic voltammogram of the PANI/PGE showed a good
linearity in the concentration range 0.005 M to 0.05 M with the detection limit
of of 1 ×10-2 M and quantification limit of 3×10-2 M.
Notably, the PANI/PGE electrode demonstrated a higher detection of Fe2+
ions compared to the bare PGE electrode. Specifically, at 7 days, the current
for the PANI/PGE electrode increased by 48%, while at 35 days, it increased by
32%, highlighting the enhanced performance of the modified electrode. The
development of the modified PGE as an electrochemical sensor for detecting
corrosion in mild steel has been successfully achieved. This study underscores
the enhanced sensitivity and selectivity of the PANI-modified PGE, showcasing
its potential for efficient on-site detection by quantifying Fe2+
ions in corrosion samples.
Keywords: mild steel; cyclic
voltammetry; electrochemical sensor; pencil graphite electrode
References
1.
Eivaz Mohammadloo, H.,
Mirabedini, S., and Pezeshk-Fallah, H. (2019). Microencapsulation of quinoline
and cerium based inhibitors for smart coating application: Anti-corrosion,
morphology and adhesion study. Progress in Organic Coatings, 137: 105339.
2.
Olasunkanmi, L. O., and
Ebenso, E. E. (2020). Experimental and computational studies on propanone
derivatives of quinoxalin-6-yl-4,5-dihydropyrazole as inhibitors of mild steel
corrosion in hydrochloric acid. Journal of Colloid and Interface Science,
561: 104-116.
3.
Berrissoul, A., Ouarhach,
A., Benhiba, F., Romane, A., Zarrouk, A., Guenbour, A., Dikici, B., and Dafali,
A. (2020). Evaluation of Lavandula mairei extract as green inhibitor for mild
steel corrosion in 1 M HCl solution. Experimental and theoretical approach. Journal of Molecular Liquids, 313:
113493.
4.
Komary, M.,
Komarizadehasl, S., Tošić, N., Segura Pérez, I., Lozano-Galant, J.A., and
Turmo, J. (2023). Low-cost technologies used in corrosion monitoring. Sensors, 23(3): 1309.
5.
Dhole, G., Gunasekaran,
G., Ghorpade, T., and Vinjamur, M. (2017). Smart acrylic coatings for corrosion
detection. Progress in Organic Coatings,
110: 140–149.
6.
Acar, Ö., and Yaşar,
C.F. (2024). Developments in smart wall-climbing robots for corrosion
inspection. Multimedia Tools and
Applications: 1-23.
7.
Mejri,
A., Mandriota, G., Hamza, E., Curri, M.L., Ingrosso, C., and Mars, A. (2023). Pencil graphite electrocatalytic sensors modified by pyrene
coated reduced graphene oxide. Molecules,
28(21) : 7311.
8.
Goldoni, R., Vieira
Thomaz, D., Ottolini, M., Di Giulio, S., and Di Giulio, T. (2024).
Characterization of in situ electrosynthesis of polyaniline on pencil graphite
electrodes. Journal of Materials Science,
59: 10287-10308.
9.
Wu, Y., Gao, X., and Li,
Y. (2024). Electrochemical sensors based on polyaniline nanocomposites for
detecting Cd (II) in wastewater. International
Journal of Electrochemical Science, 19(3): 100519.
10.
Kumar, A., Sharma, S.,
Tripathi, C. S. P., & Guin, D. (2024). 2‐dimensional magnesium
oxide/polyaniline nanocomposite modified glassy carbon electrode for
electrochemical detection of dopamine and 4‐nitrophenol. ChemistrySelect,
9(9): e202304435.
11.
Selvaraj, R., Ganesan,
S., and Balachandravinayagam, E. (2024).
Development of modified pencil graphite electrode sensors by using polyaniline
and polypyrrole based hydrogels. Oriental
Journal of Chemistry, 40(5).
12.
ÖZcan, A., Gürbüz, M., and
ÖZcan, A. A. (2018). Preparation of a disposable and low-cost electrochemical
sensor for propham detection based on over-oxidized poly(thiophene) modified
pencil graphite electrode. Talanta,
187: 125-132.
13.
Yaacob, S. F. F. S., Din,
S. N. M., and Suah, F. B. M. (2024). Ascorbic acid sensor using modified pencil
graphite electrodes: A preliminary study. Russian
Journal of Electrochemistry, 60(5): 392-399.
14.
Özcan, A.,
İlkbaş, S., and Özcan, A. A. (2017). Development of a disposable and
low-cost electrochemical sensor for dopamine detection based on
poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil
graphite electrode. Talanta, 165:
489-495.
15.
Goldoni, R., Thomaz, D.
V., Ottolini, M., Di Giulio, S., and Di Giulio, T. (2024). Characterization of
in situ electrosynthesis of polyaniline on pencil graphite electrodes through
electrochemical, spectroscopical and computational methods. Journal of Materials Science, 59(23):
10287-10308.
16.
Maheshwaran, M., and
Kumar, K. K. S. (2024). DFT and electrochemical determination of Hg2+
and Pb2+ in water using polyaniline–quinoxaline composite modified
GCE electrode. Journal of Molecular
Liquids, 398: 124317.
17.
Zhang, Z., Ye, H., Dan,
Y., Duanmu, Z., Li, Y., and Deng, J. (2020). Novel method for comprehensive
corrosion evaluation of grounding device. IEEE
Access, 8: 72102–72111.
18.
Eltai, E. O.,
Musharavati, F., and Mahdi, E. S. (2019). Severity of corrosion under
insulation (CUI) to structures and strategies to detect it. Corrosion Reviews, 37(6): 553-564.
19.
Steel, C. T. (2004).
Method 1110A: Corrosivity toward steel. Test methods for evaluating solid
waste, physical/chemical methods. U.S. Environmental Protection Agency.
20.
Korent, A., ŽAgar
Soderžnik, K., ŠTurm, S., and Žužek Rožman, K. (2020). A correlative study of
polyaniline electropolymerization and its electrochromic behavior. Journal of The Electrochemical Society,
167(10): 106504.
21.
Singh, N., Singh, P. K.,
Singh, M., Tandon, P., Singh, S. K., and Singh, S. (2019). Fabrication and
characterization of polyaniline, polyaniline/MgO (30%) and polyaniline/MgO
(40%) nanocomposites for their employment in LPG sensing at room temperature. Journal of Materials Science: Materials in
Electronics, 30: 4487-4498.
22.
Vadiraj, K. T., and
Belagali, S. (2015). Characterization of polyaniline for optical and electrical
properties. IOSR Journal of Applied
Chemistry, 8(1): 53-56.
23.
Keyhanpour, A., Seyed
Mohaghegh, S. M., and Jamshidi, A. (2012). Electropolymerization and
characterization of polyaniline, poly(2-anilinoethanol) and
poly(aniline-co-2-anilinoethanol). Iranian
Polymer Journal, 21: 307-315.
24.
Ajeel, K. I., and Kareem,
Q. S. (2019). Synthesis and characteristics of polyaniline (PANI) filled by
graphene (PANI/GR) nano-films. Journal of
Physics: Conference Series, 1234: 012020.
25.
Mazzeu, M. A. C., Faria,
L. K., Baldan, M. R., Rezende, M. C., and Gonçalves, E. S. (2018). Influence of
reaction time on the structure of polyaniline synthesized on a pre-pilot scale.
Brazilian Journal of Chemical
Engineering, 35(1): 123-130.
26.
Qin, Q., Tao, J., and
Yang, Y. (2010). Preparation and characterization of polyaniline film on
stainless steel by electrochemical polymerization as a counter electrode of
DSSC. Synthetic Metals, 160(11-12):
1167-1172.
27.
Beygisangchin, M., Abdul
Rashid, S., Shafie, S., Sadrolhosseini, A. R., and Lim, H. N. (2021).
Preparations, properties, and applications of polyaniline and polyaniline thin
films - A review. Polymers, 13(12):
2003.
28.
Majeed, A. H., Mohammed,
L. A., Hammoodi, O. G., Sehgal, S., Alheety, M. A., Saxena, K. K., Dadoosh
S.A., Mohammed I.K., Jasim M.M. and Salmaan, N. U. (2022). A review on
polyaniline: synthesis, properties, nanocomposites, and electrochemical
applications. International Journal of
Polymer Science, 2022(1): 9047554.
29.
Purushothama, H., and
Arthoba Nayaka, Y. (2019). Pencil graphite electrode based electrochemical
system for the investigation of antihypertensive drug hydrochlorothiazide: An
electrochemical study. Chemical Physics
Letters, 734: 136718.
30.
de
França, C. C. L., Meneses, D., Silva, A. C. A., Dantas, N. O., de Abreu, F. C.,
Petroni, J. M., and Lucca, B. G. (2021). Development of novel paper-based electrochemical device
modified with CdSe/CdS magic-sized quantum dots and application for the sensing
of dopamine. Electrochimica Acta,
367: 137486.
31.
Sari, R. M. C., Marlin,
E., and Hartati, Y. W. (2019). Penentuan besi (III) secara voltammetri menggunakan elektrode grafit
pensil. Chimica et Natura Acta, 7(3): 138-146.
32.
Ismail, R.,
Šeděnková, I., Černochová, Z., Romanenko, I., Pop-Georgievski, O., Hrubý, M.,
and Tomšík, E. (2022). Potentiometric performance of ion-selective electrodes
based on polyaniline and chelating agents: detection of Fe2+ or Fe3+
ions. Biosensors, 12(7): 446.
33.
Radhi, M. M., Mossa, A.
A., Al-Mulla, E. A. J., and Lafta, A. N. (2022). Electrochemical study of
modified glassy carbon electrode with polyaniline nanoparticles using cyclic
voltammetry. Bulletin of the Chemical
Society of Ethiopia, 36(3), 687-696.
34.
AlAqad, K. M., Suleiman,
R., al Hamouz, O. C. S., and Saleh, T. A. (2018). Novel graphene modified
carbon-paste electrode for promazine detection by square wave voltammetry. Journal
of Molecular Liquids, 252: 75-82.
35.
Emmanuel, J. K. (2024).
Corrosion protection of mild steel in corrosive media, a shift from synthetic
to natural corrosion inhibitors: a review. Bulletin
of the National Research Centre, 48(1): 26.
36.
Sodiki, J. I., Ndor, M.
V., and Sodiki, A. (2016). A note on the modeling of corrosion rates of mild
steel, medium carbon steel, brass, and aluminum. European Journal of Engineering and Technology, 4(3): 8-10.
37.
Abdar, P. S., Hariri, M.
B., Kahyarian, A., and Nesic, S. (2021). A revision of mechanistic modeling of
mild steel corrosion in H2S environments. Electrochimica
Acta, 382: 138231.
38.
Yang, J., Lu, Y., Guo,
Z., Gu, J., and Gu, C. (2018). Corrosion behaviour of a quenched and
partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corrosion Science, 130: 64-75.