Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1615
Research Article
Design and
evaluation of a benzimidazole-based nickel(II) catalyst for the Suzuki reaction
Norul Azilah Abdul
Rahman, Noor Azmira Rahim, Najwa Asilah M Shamsuddin, and Nur Rahimah Said*
*Corresponding author: nurra1435@uitm.edu.my
Received:
9 July 2025; Revised: 17 September 2025; Accepted: 23 September 2025;
Published: 16 October 2025
Abstract
Nickel catalysts offer significant advantages over
palladium-based systems, being more cost-effective and environmentally
sustainable for the Suzuki reaction. This study reported on the design and
synthesis of a new benzimidazole-based nickel(II) catalyst,
[Bis(1,3-bis(4-chlorobenzyl)benzimidazole)]dibromonickel(II) complex (Ni-CAT).
The catalyst was synthesised in two steps: firstly, the ligand was prepared via
the reaction of benzimidazole with 4-chlorobenzyl bromide, and secondly by
coordination with nickel(II). Both the ligand and Ni-CAT were comprehensively
characterised by using FAAS, FTIR, NMR (¹H and ¹³C), UV–Vis spectroscopy, and
XRD. Results confirmed the successful synthesis of the target complex. A
preliminary complexation study revealed that a 1:2 metal-to-ligand ratio, was consistent
with the proposed structure of Ni-CAT. Catalytic performance of Ni-CAT was
evaluated in the Suzuki carbon–carbon coupling of aryl bromides with
phenylboronic acid. Effects of different aryl bromides, solvents and bases were
systematically studied, with catalytic activity monitored by GC-FID. High
conversion rate of 91.7% was achieved under optimised conditions of 1-bromo-4-nitrobenzene,
0.25 mmol% Ni-CAT catalyst loading, methanol as solvent, and K₂CO₃
as base at 65 °C for 2 h. This study established a novel benzimidazole-derived
nickel(II) complex as an efficient and sustainable alternative to palladium
catalysts in the Suzuki reaction, demonstrating excellent activity under mild
conditions with exceptionally low catalyst loading.
Keywords: benzimidazole ligand, carbon-carbon coupling
reaction, nickel(II) benzimidazole catalyst, carbene carbon, Suzuki reaction
References
1.
El-Maiss, J., Mohy El
Dine, T., Lu, C. S., Karamé, I.,
Kanj, A., Polychronopoulou, K., and Shaya, J. (2020). Recent advances in
metal-catalyzed alkyl–boron (C(sp3))–C(sp2))
Suzuki-Miyaura cross-couplings. Catalysts, 10(3): 296.
2.
Jarvo, E. R., Wong, C.
D., Bradford, L. C., and Hirbawi, N. (2025). Nickel‐catalyzed
Suzuki‐Miyaura cross‐coupling reaction of aliphatic alcohol derivatives. Angewandte
Chemie International Edition, 2025: e202509657.
3.
Cao, J., Xiong, G., Luo, Z., Huang, Q., Zhou, W.,
Dragutan, I., Dragutan, V., Sun, Y., and Ding, F. (2024). Synthesis of amide
functionlized bidentate NHC-Pd complex for application as catalyst in
Suzuki‐Miyaura cross-coupling, in distilled water, under mild reaction
conditions. Inorganica Chimica Acta, 568: 122076.
4.
Baviskar, B. A., Ajmire,
P. V., Chumbhale, D. S., Khan, M. S., Kuchake, V. G., Singupuram, M., and
Laddha, P. R. (2023). Recent advances in nickel catalyzed Suzuki-Miyaura cross
coupling reaction via CO & CN bond activation. Sustainable
Chemistry and Pharmacy, 32: 100953.
5.
John, M. E., Nutt, M. J.,
Offer, J. E., Duczynski, J. A., Yamazaki, K., Miura, T., Moggach, S. A.,
Koutsantonis, G. A., Dorta, R., and Stewart, S. G. (2025). Efficient nickel
precatalysts for Suzuki‐Miyaura cross‐coupling of aryl chlorides and arylboronic acids under mild
conditions. Angewandte Chemie International Edition, 64(22): e202504108.
6.
Key,
R. J. (2019). Development of nickel catalyzed cross-coupling
methodologies. The Journal of The Royalty Society of Chemistry, 11: 4287-4296.
7.
Wu, C., Lin, J., and Tian, X. (2022).
Synthesis of indolo [2, 1-a] isoquinolines by nickel-catalyzed Mizoroki–Heck/amination
cascade reaction. Organic letters, 25(1): 158-162.
8.
Lin, J., Wu, C., and Tian, X. (2022).
Nickel-catalyzed cascade reaction of 2-vinylanilines with gem-dichloroalkenes. Organic
Letters, 24(27): 4855-4859.
9.
Zahakifar, F., Keshtkar,
A. R., and Talebi, M. (2021). Synthesis of sodium alginate (SA)/polyvinyl
alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure
adsorbent by casting method for uranium (VI) adsorption from aqueous
solutions. Progress in Nuclear Energy, 134: 103642.
10.
Fauzi, A. A., Rahman, N.
A. A., and Said, N. R. (2023). Synthesis and characterisations of nickel (II)–hydrazone
complex as catalyst in Suzuki reaction. Malaysian Journal of Analytical
Sciences, 27(3): 453-462.
11.
Lee, B. C., Liu, C. F., Lin, L. Q. H., Yap, K. Z.,
Song, N., Ko, C. H. M., Chan, P. H., and Koh, M. J. (2023). N-heterocyclic
carbenes as privileged ligands for nickel-catalysed alkene
functionalisation. Chemical Society Reviews, 52(9): 2946-2991.
12.
Buldurun, K., and
Özdemir, İ. (2019). 5-nitrobenzimidazole
containing Pd(II) catalyzed C-C cross- coupling reactions: The effect of the N-substituent of the benzimidazole
structure on catalyst activity. Journal
of Molecular Structure, 1192: 172-177.
13.
Umar, I. K., and Samir,
B. (2019). Application of heterocyclic compounds as catalysts in Suzuki-Miyaura
cross-coupling reaction. cumhuriyet science. Journal CSJ., 40(4): 854-859.
14.
Yilmaz, Ü., Küçükbay, H.,
Deniz, S., and Şireci, N. (2013). Synthesis, characterization and
microwave- promoted catalytic activity of novel N-phenylbenzimidazolium salts
in Heck-Mizoroki and Suzuki- Miyaura cross-coupling reactions under mild conditions.
Molecules, 18(3): 2501-2517.
15.
Said, N. R., Rezayi, M.,
Narimani, L., Manan, N. S. A., and Alias, Y. (2015). A novel potentiometric
self-plasticizing polypyrrole sensor based on a bidentate bis-NHC ligand for
determination of Hg(II) cation. RSC Advances, 5(93): 76263-76274.
16.
Said, N. R., Rezayi, M.,
Narimani, L., Al-Mohammed, N. N., Manan, N. S. A., and Alias, Y. (2016). A new
N-heterocyclic carbene ionophore in plasticizer-free polypyrrole membrane for
determining Ag+ in tap water. Electrochimica Acta, 197:
10-22.
17.
Horak, E., Vianello, R., and
Steinberg, I. M. (2019). Chemistry and applications of benzimidazole and
its derivatives. Optical sensing (nano) materials based on benzimidazole
derivatives. IntechOpen, pp. 159.
18.
Said, N. R., Mustakim, M.
A., Sani, N. M., and Baharin, S. N. A. (2018). Heck reaction using
palladium-benzimidazole catalyst: Synthesis, characterisation and catalytic
activity. In IOP Conference Series: Materials Science and Engineering,
458(1), 012019.
19.
Wang, T., Wei, T. R.,
Huang, S. J., Lai, Y. T., Lee, D. S., and Lu, T. J. (2021). Synthesis of
xylyl-linked bis-benzimidazolium salts and their application in the
palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl
chlorides. Catalysts, 11(7): 817.
20.
Nair, P. P., Jayaraj, A.,
and Swamy P, C. A. (2022). Recent advances in benzimidazole based
NHC‐metal complex catalysed cross‐coupling reactions. ChemistrySelect, 7(4):
e202103517.
21.
Gholivand, K., Salami,
R., Farshadfar, K., and Butcher, R. J. (2016). Synthesis and structural
characterization of Pd(II) and Cu(I) complexes containing dithiophosphorus
ligand and their catalytic activities for Heck reaction. Polyhedron, 119:
267-276.
22.
Kucukbay, H., Yilmaz, Ü.,
Yavuz, K., and Bugday, N. (2015). Synthesis, characterization, and microwave-
assisted catalytic activity in Heck, Suzuki, Sonogashira, and Buchwald-Hartwig
cross-coupling reactions of novel benzimidazole salts bearing N-phthalimidoethyl
and benzyl moieties. Turkish Journal of Chemistry, 39(6): 1265-1278.
23.
Ado, I., Na’aliya, J., Sani, S., and Haleelu, M. M. (2021). Synthesis,
spectroscopic and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II)
complexes derived from benzoic acid bidentate Schiff base ligand. Journal
of Applied Sciences and Environmental Management, 25(9): 1599-1603.
24.
Haque, R. A., and Iqbal,
M. A. (2013). Synthesis and characterization of ortho-xylyl linked bis-
benzimidazolium salts (Part-II). Asian Journal of Chemistry, 25(6): 3049.
25.
Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, C. V., Ung,
G., and He, J. (2020). N-Heterocyclic carbene-ended polymers as surface ligands
of plasmonic metal nanoparticles. Journal of Materials Chemistry C, 8(7):
2280-2288.
26.
Rahman, M. M., Zhao, Q., Meng, G., Szostak, R., and Szostak, M. (2022).
[Ni (Np#)(η5-Cp) Cl]: Flexible, Sterically Bulky, Well-Defined, Highly
Reactive Complex for Nickel-Catalyzed Cross-Coupling. Organometallics, 41(18):2597-2604.
27.
Kulaksizoğlu, S.,
Gökçe, C., and Gup, R. (2012). Asymmetric BIS (bidentate) azine ligand and
transition metal complexes: Synthesis, characterization, DNA-binding and
cleavage studies and extraction properties for selected metals and dichromate
anions. Journal of the Chilean Chemical Society, 57(3): 1213-1218.
28.
Hao, Z. C., Wang, S. C.,
Yang, Y. J., and Cui, G. H. (2020). Syntheses, structural diversities and
photocatalytic properties of three nickel (II) coordination polymers based
semi-bis (benzimidazole) and aromatic dicarboxylic acid ligands. Polyhedron, 181:
114466.
29.
Hou, C. L., Song, J. X.,
Chang, X., and Chen, Y. (2024). Photoluminescent nickel (II) carbene complexes
with ligand-to-ligand charge-transfer excited states. Chinese Chemical
Letters, 35(1): 108333.
30.
Dong, X. Y., Kang, Q. P., Jin, B. X., and Dong, W. K.
(2017). A dinuclear nickel (II) complex derived from an asymmetric Salamo-type N2O2 chelate ligand:
Synthesis, structure and optical properties. Zeitschrift für Naturforschung B, 72(6): 415-420.
31.
Ting, S. I., Garakyaraghi, S., Taliaferro, C. M., Shields, B. J., Scholes,
G. D., Castellano, F. N., and Doyle, A. G. (2020). 3d-d excited states of Ni
(II) complexes relevant to photoredox catalysis: spectroscopic identification
and mechanistic implications. Journal of the American Chemical Society, 142(12):
5800-5810.
32.
Golestanzadeh, M., and
Naeimi, H. (2019). Palladium decorated on a new dendritic complex with nitrogen
ligation grafted to graphene oxide: Fabrication, characterization, and
catalytic application. RSC Advances, 9(47): 27560-27573.
33.
Jaji, N. D., Othman, M.
B. H., Lee, H. L., Hussin, M. H., and Hui, D. (2021). One-pot solvothermal
synthesis and characterization of highly stable nickel nanoparticles. Nanotechnology
Reviews, 10(1): 318-329.
34.
Tang, S., Li, L., Cao, X., and Yang, Q.
(2023). Ni-chitosan/carbon nanotube: An efficient biopolymer-inorganic catalyst
for selective hydrogenation of acetylene. Heliyon, 9(2):
e13523.
35.
Moreira, J. M., Vieira, S. D. S. F., Correia, G. D. D., de Almeida, L. N.,
Finoto, S., Brandl, C. A., Msumange, A.A., Galvão, F., Pires de Oliveira, K.M.,
Caneppele Paveglio, G., da Silva, M.M., Tirloni, B., de Carvalho, C. T., and
Roman, D. (2025). Synthesis and Characterization of Novel Hydrazone Complexes:
Exploring DNA/BSA Binding and Antimicrobial Potential. ACS Omega, 10(7):
7428-7440.
36.
Mrudula, M. S., and
Gopinathan Nair, M. R. P. (2020). Studies on the complexation of 3D
transition metal ions with NR/PEO block copolymer in aqueous medium. Polymer
Engineering & Science, 60(4): 661-672.
37.
Abd El-Lateef, H. M., Khalaf, M. M., and Abdou, A. (2024). Exploring the
molecular structure and in vitro biological potential of newly synthesized Fe
(III), Co (II), and Ni (II) coordination compounds with
2-(pyridin-2-yl)-1H-benzimidazole and phenylalanine ligands. Polyhedron, 260:
117103.
38.
Luo, J., Davenport, M. T., Ess, D. H., and Liu, T. L. (2024). Nickel‐catalyzed electrochemical cross‐electrophile C(sp2)−C(sp3) coupling via a Ni(II)
aryl amido intermediate. Angewandte Chemie, 136(38):
e202407118.
39.
Luo, J., Davenport, M. T., Callister, C., Minteer, S. D., Ess, D. H., and
Liu, T. L. (2023). Understanding formation and roles of Ni(II) aryl amido and
NiIII aryl amido intermediates in Ni-catalyzed electrochemical aryl amination
reactions. Journal of the American Chemical Society, 145(29):
16130-16141.
40.
Buchspies, J., Rahman, M. M., and Szostak, M. (2020). Suzuki–Miyaura cross-coupling
of amides using well-defined, air-and moisture-stable nickel/NHC
(NHC=N-Heterocyclic Carbene) complexes. Catalysts, 10(4): 372.
41.
Lau, S. H., Borden, M. A., Steiman, T. J., Wang, L. S., Parasram, M., and
Doyle, A. G. (2021). Ni/photoredox-catalyzed enantioselective
cross-electrophile coupling of styrene oxides with aryl iodides. Journal
of the American Chemical Society, 143(38): 15873-15881.
42.
Zhang, T., Zhong, K., Lin, Z. K., Niu, L., Li, Z. Q., Bai, R., Engle, K.
M., and Lan, Y. (2023). Revised Mechanism of C(sp3)–C(sp3)
reductive elimination from Ni (II) with the assistance of a z-type
metalloligand. Journal of the American Chemical Society, 145(4):
2207-2218.
43.
Elhage, A., Lanterna, A. E., and Scaiano, J. C. (2018). Light-induced
sonogashira C–C coupling under mild conditions using supported palladium
nanoparticles. ACS Sustainable Chemistry & Engineering, 6(2): 1717-1722.