Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1615

 

Research Article

 

Design and evaluation of a benzimidazole-based nickel(II) catalyst for the Suzuki reaction

 

Norul Azilah Abdul Rahman, Noor Azmira Rahim, Najwa Asilah M Shamsuddin, and Nur Rahimah Said*

 

School of Chemistry and Environment, Faculty of Applied Sciences Universiti Teknologi MARA (UiTM), Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: nurra1435@uitm.edu.my

 

Received: 9 July 2025; Revised: 17 September 2025; Accepted: 23 September 2025; Published: 16 October 2025

 

Abstract

Nickel catalysts offer significant advantages over palladium-based systems, being more cost-effective and environmentally sustainable for the Suzuki reaction. This study reported on the design and synthesis of a new benzimidazole-based nickel(II) catalyst, [Bis(1,3-bis(4-chlorobenzyl)benzimidazole)]dibromonickel(II) complex (Ni-CAT). The catalyst was synthesised in two steps: firstly, the ligand was prepared via the reaction of benzimidazole with 4-chlorobenzyl bromide, and secondly by coordination with nickel(II). Both the ligand and Ni-CAT were comprehensively characterised by using FAAS, FTIR, NMR (¹H and ¹³C), UV–Vis spectroscopy, and XRD. Results confirmed the successful synthesis of the target complex. A preliminary complexation study revealed that a 1:2 metal-to-ligand ratio, was consistent with the proposed structure of Ni-CAT. Catalytic performance of Ni-CAT was evaluated in the Suzuki carbon–carbon coupling of aryl bromides with phenylboronic acid. Effects of different aryl bromides, solvents and bases were systematically studied, with catalytic activity monitored by GC-FID. High conversion rate of 91.7% was achieved under optimised conditions of 1-bromo-4-nitrobenzene, 0.25 mmol% Ni-CAT catalyst loading, methanol as solvent, and K₂CO₃ as base at 65 °C for 2 h. This study established a novel benzimidazole-derived nickel(II) complex as an efficient and sustainable alternative to palladium catalysts in the Suzuki reaction, demonstrating excellent activity under mild conditions with exceptionally low catalyst loading.

 

Keywords: benzimidazole ligand, carbon-carbon coupling reaction, nickel(II) benzimidazole catalyst, carbene carbon, Suzuki reaction



References

1.        El-Maiss, J., Mohy El Dine, T., Lu, C. S., Karamé, I., Kanj, A., Polychronopoulou, K., and Shaya, J. (2020). Recent advances in metal-catalyzed alkyl–boron (C(sp3))–C(sp2)) Suzuki-Miyaura cross-couplings. Catalysts, 10(3): 296.

2.        Jarvo, E. R., Wong, C. D., Bradford, L. C., and Hirbawi, N. (2025). Nickel‐catalyzed Suzuki‐Miyaura crosscoupling reaction of aliphatic alcohol derivatives. Angewandte Chemie International Edition, 2025: e202509657.

3.        Cao, J., Xiong, G., Luo, Z., Huang, Q., Zhou, W., Dragutan, I., Dragutan, V., Sun, Y., and Ding, F. (2024). Synthesis of amide functionlized bidentate NHC-Pd complex for application as catalyst in Suzuki‐Miyaura cross-coupling, in distilled water, under mild reaction conditions. Inorganica Chimica Acta, 568: 122076.

4.        Baviskar, B. A., Ajmire, P. V., Chumbhale, D. S., Khan, M. S., Kuchake, V. G., Singupuram, M., and Laddha, P. R. (2023). Recent advances in nickel catalyzed Suzuki-Miyaura cross coupling reaction via CO & CN bond activation. Sustainable Chemistry and Pharmacy, 32: 100953.

5.        John, M. E., Nutt, M. J., Offer, J. E., Duczynski, J. A., Yamazaki, K., Miura, T., Moggach, S. A., Koutsantonis, G. A., Dorta, R., and Stewart, S. G. (2025). Efficient nickel precatalysts for Suzuki‐Miyaura crosscoupling of aryl chlorides and arylboronic acids under mild conditions. Angewandte Chemie International Edition, 64(22): e202504108.

6.        Key, R. J. (2019). Development of nickel catalyzed cross-coupling methodologies. The Journal of The Royalty Society of Chemistry, 11: 4287-4296.

7.        Wu, C., Lin, J., and Tian, X. (2022). Synthesis of indolo [2, 1-a] isoquinolines by nickel-catalyzed Mizoroki–Heck/amination cascade reaction. Organic letters, 25(1): 158-162.

8.        Lin, J., Wu, C., and Tian, X. (2022). Nickel-catalyzed cascade reaction of 2-vinylanilines with gem-dichloroalkenes. Organic Letters, 24(27): 4855-4859.

9.        Zahakifar, F., Keshtkar, A. R., and Talebi, M. (2021). Synthesis of sodium alginate (SA)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Progress in Nuclear Energy, 134: 103642.

10.     Fauzi, A. A., Rahman, N. A. A., and Said, N. R. (2023). Synthesis and characterisations of nickel (II)–hydrazone complex as catalyst in Suzuki reaction. Malaysian Journal of Analytical Sciences, 27(3): 453-462.

11.     Lee, B. C., Liu, C. F., Lin, L. Q. H., Yap, K. Z., Song, N., Ko, C. H. M., Chan, P. H., and Koh, M. J. (2023). N-heterocyclic carbenes as privileged ligands for nickel-catalysed alkene functionalisation. Chemical Society Reviews, 52(9): 2946-2991.

12.     Buldurun, K., and Özdemir, İ. (2019). 5-nitrobenzimidazole containing Pd(II) catalyzed C-C cross- coupling reactions: The effect of the N-substituent of the benzimidazole structure on catalyst activity. Journal of Molecular Structure, 1192: 172-177.

13.     Umar, I. K., and Samir, B. (2019). Application of heterocyclic compounds as catalysts in Suzuki-Miyaura cross-coupling reaction. cumhuriyet science. Journal CSJ., 40(4): 854-859.

14.     Yilmaz, Ü., Küçükbay, H., Deniz, S., and Şireci, N. (2013). Synthesis, characterization and microwave- promoted catalytic activity of novel N-phenylbenzimidazolium salts in Heck-Mizoroki and Suzuki- Miyaura cross-coupling reactions under mild conditions. Molecules, 18(3): 2501-2517.

15.     Said, N. R., Rezayi, M., Narimani, L., Manan, N. S. A., and Alias, Y. (2015). A novel potentiometric self-plasticizing polypyrrole sensor based on a bidentate bis-NHC ligand for determination of Hg(II) cation. RSC Advances5(93): 76263-76274.

16.     Said, N. R., Rezayi, M., Narimani, L., Al-Mohammed, N. N., Manan, N. S. A., and Alias, Y. (2016). A new N-heterocyclic carbene ionophore in plasticizer-free polypyrrole membrane for determining Ag+ in tap water. Electrochimica Acta, 197: 10-22.

17.     Horak, E., Vianello, R., and Steinberg, I. M. (2019). Chemistry and applications of benzimidazole and its derivatives. Optical sensing (nano) materials based on benzimidazole derivatives. IntechOpen, pp. 159.

18.     Said, N. R., Mustakim, M. A., Sani, N. M., and Baharin, S. N. A. (2018). Heck reaction using palladium-benzimidazole catalyst: Synthesis, characterisation and catalytic activity. In IOP Conference Series: Materials Science and Engineering, 458(1), 012019.

19.     Wang, T., Wei, T. R., Huang, S. J., Lai, Y. T., Lee, D. S., and Lu, T. J. (2021). Synthesis of xylyl-linked bis-benzimidazolium salts and their application in the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of aryl chlorides. Catalysts, 11(7): 817.

20.     Nair, P. P., Jayaraj, A., and Swamy P, C. A. (2022). Recent advances in benzimidazole based NHC‐metal complex catalysed cross‐coupling reactions. ChemistrySelect7(4): e202103517.

21.     Gholivand, K., Salami, R., Farshadfar, K., and Butcher, R. J. (2016). Synthesis and structural characterization of Pd(II) and Cu(I) complexes containing dithiophosphorus ligand and their catalytic activities for Heck reaction. Polyhedron, 119: 267-276.

22.     Kucukbay, H., Yilmaz, Ü., Yavuz, K., and Bugday, N. (2015). Synthesis, characterization, and microwave- assisted catalytic activity in Heck, Suzuki, Sonogashira, and Buchwald-Hartwig cross-coupling reactions of novel benzimidazole salts bearing N-phthalimidoethyl and benzyl moieties. Turkish Journal of Chemistry, 39(6): 1265-1278.

23.     Ado, I., Na’aliya, J., Sani, S., and Haleelu, M. M. (2021). Synthesis, spectroscopic and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from benzoic acid bidentate Schiff base ligand. Journal of Applied Sciences and Environmental Management, 25(9): 1599-1603.

24.     Haque, R. A., and Iqbal, M. A. (2013). Synthesis and characterization of ortho-xylyl linked bis- benzimidazolium salts (Part-II). Asian Journal of Chemistry, 25(6): 3049.

25.     Thanneeru, S., Ayers, K. M., Anuganti, M., Zhang, L., Kumar, C. V., Ung, G., and He, J. (2020). N-Heterocyclic carbene-ended polymers as surface ligands of plasmonic metal nanoparticles. Journal of Materials Chemistry C, 8(7): 2280-2288.

26.     Rahman, M. M., Zhao, Q., Meng, G., Szostak, R., and Szostak, M. (2022). [Ni (Np#)(η5-Cp) Cl]: Flexible, Sterically Bulky, Well-Defined, Highly Reactive Complex for Nickel-Catalyzed Cross-Coupling. Organometallics, 41(18):2597-2604.

27.     Kulaksizoğlu, S., Gökçe, C., and Gup, R. (2012). Asymmetric BIS (bidentate) azine ligand and transition metal complexes: Synthesis, characterization, DNA-binding and cleavage studies and extraction properties for selected metals and dichromate anions. Journal of the Chilean Chemical Society, 57(3): 1213-1218.

28.     Hao, Z. C., Wang, S. C., Yang, Y. J., and Cui, G. H. (2020). Syntheses, structural diversities and photocatalytic properties of three nickel (II) coordination polymers based semi-bis (benzimidazole) and aromatic dicarboxylic acid ligands. Polyhedron, 181: 114466.

29.     Hou, C. L., Song, J. X., Chang, X., and Chen, Y. (2024). Photoluminescent nickel (II) carbene complexes with ligand-to-ligand charge-transfer excited states. Chinese Chemical Letters, 35(1): 108333.

30.     Dong, X. Y., Kang, Q. P., Jin, B. X., and Dong, W. K. (2017). A dinuclear nickel (II) complex derived from an asymmetric Salamo-type N2O2 chelate ligand: Synthesis, structure and optical properties. Zeitschrift für Naturforschung B, 72(6): 415-420.  

31.     Ting, S. I., Garakyaraghi, S., Taliaferro, C. M., Shields, B. J., Scholes, G. D., Castellano, F. N., and Doyle, A. G. (2020). 3d-d excited states of Ni (II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. Journal of the American Chemical Society, 142(12): 5800-5810.

32.     Golestanzadeh, M., and Naeimi, H. (2019). Palladium decorated on a new dendritic complex with nitrogen ligation grafted to graphene oxide: Fabrication, characterization, and catalytic application. RSC Advances, 9(47): 27560-27573.

33.     Jaji, N. D., Othman, M. B. H., Lee, H. L., Hussin, M. H., and Hui, D. (2021). One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnology Reviews, 10(1): 318-329.

34.     Tang, S., Li, L., Cao, X., and Yang, Q. (2023). Ni-chitosan/carbon nanotube: An efficient biopolymer-inorganic catalyst for selective hydrogenation of acetylene. Heliyon, 9(2): e13523.  

35.     Moreira, J. M., Vieira, S. D. S. F., Correia, G. D. D., de Almeida, L. N., Finoto, S., Brandl, C. A., Msumange, A.A., Galvão, F., Pires de Oliveira, K.M., Caneppele Paveglio, G., da Silva, M.M., Tirloni, B., de Carvalho, C. T., and Roman, D. (2025). Synthesis and Characterization of Novel Hydrazone Complexes: Exploring DNA/BSA Binding and Antimicrobial Potential. ACS Omega, 10(7): 7428-7440.

36.     Mrudula, M. S., and Gopinathan Nair, M. R. P. (2020). Studies on the complexation of 3D transition metal ions with NR/PEO block copolymer in aqueous medium. Polymer Engineering & Science, 60(4): 661-672.

37.     Abd El-Lateef, H. M., Khalaf, M. M., and Abdou, A. (2024). Exploring the molecular structure and in vitro biological potential of newly synthesized Fe (III), Co (II), and Ni (II) coordination compounds with 2-(pyridin-2-yl)-1H-benzimidazole and phenylalanine ligands. Polyhedron, 260: 117103.

38.     Luo, J., Davenport, M. T., Ess, D. H., and Liu, T. L. (2024). Nickelcatalyzed electrochemical crosselectrophile C(sp2)−C(sp3) coupling via a Ni(II) aryl amido intermediate. Angewandte Chemie, 136(38): e202407118.

39.     Luo, J., Davenport, M. T., Callister, C., Minteer, S. D., Ess, D. H., and Liu, T. L. (2023). Understanding formation and roles of Ni(II) aryl amido and NiIII aryl amido intermediates in Ni-catalyzed electrochemical aryl amination reactions. Journal of the American Chemical Society, 145(29): 16130-16141.

40.     Buchspies, J., Rahman, M. M., and Szostak, M. (2020). Suzuki–Miyaura cross-coupling of amides using well-defined, air-and moisture-stable nickel/NHC (NHC=N-Heterocyclic Carbene) complexes. Catalysts, 10(4): 372.

41.     Lau, S. H., Borden, M. A., Steiman, T. J., Wang, L. S., Parasram, M., and Doyle, A. G. (2021). Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides with aryl iodides. Journal of the American Chemical Society, 143(38): 15873-15881.

42.     Zhang, T., Zhong, K., Lin, Z. K., Niu, L., Li, Z. Q., Bai, R., Engle, K. M., and Lan, Y. (2023). Revised Mechanism of C(sp3)–C(sp3) reductive elimination from Ni (II) with the assistance of a z-type metalloligand. Journal of the American Chemical Society, 145(4): 2207-2218.

43.     Elhage, A., Lanterna, A. E., and Scaiano, J. C. (2018). Light-induced sonogashira C–C coupling under mild conditions using supported palladium nanoparticles. ACS Sustainable Chemistry & Engineering, 6(2): 1717-1722.