Malays. J. Anal. Sci. Volume 29 Number 5 (2025): 1575

 

Research Article

 

Simultaneous profiling of methanol and ethanol in local and foreign alcoholic beverages by GC-FID

 

Manja Murni Che Kalid1,2, Nik Fakhuruddin Nik Hassan1*, Faridah Mohd Marsin3, Noor Hermie Othman3, and Yusmazura Zakaria4

 

1Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia

2Narcotics Division, Forensic Science Analysis Centre, Department of Chemistry Malaysia, Jalan Sultan, 46661 Petaling Jaya, Selangor.

3Toxicology Section, Forensic Division, Department of Chemistry, Jalan Dato Bahaman, 25250, Kuantan, Pahang, Malaysia

4Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia

 

*Corresponding author: nikf@usm.my

 

Received: 14 May 2025; Revised: 7 September 2025; Accepted: 23 September 2025; Published: 16 October 2025

 

Abstract

Intoxication with methanol from alcoholic beverages is a global issue. Methanol can cause severe health complications and death. For these reasons, numerous methods for measuring methanol in alcoholic beverages have developed. This study aimed to develop an accurate, sensitive, and simple method for determining methanol and ethanol in local and foreign alcoholic beverages using GC-FID. The method was developed by optimising GC parameters including an initial oven temperature of 40°C held for 2 minutes, ramping at 25 °C/min until 100°C, a carrier gas flow rate of 4.5 mL/min, a 2:1 split ratio, and an injection volume of 10 µL. The optimised method met UNODC guidelines for specificity, linearity, detection and quantification limits, precision, and accuracy. Both the methanol (0.001%–0.625%) and ethanol (5%25%) calibration curves had correlation coefficients (r2) of more than 0.99. LOQs for methanol and ethanol were 1.72 and 1.76 mg/L, respectively, with good precision and recoveries. The run time was 5.40 minutes to complete. 19 different alcoholic beverages were analysed by injecting them directly into the GC-FID after adding acetonitrile as an internal standard. This study revealed that 36.8% of samples had methanol concentrations between 0%0.0198%, while ethanol was detected in every sample. The proposed method is sensitive, simple, and requires no pre-treatment, making it suitable for forensic toxicological analysis. Importantly, methanol was reliably detected without interference from higher concentrations of ethanol. This research demonstrated that the DB ALC 1 column capillary in GC-FID with optimised parameters is very selective and sensitive in measuring methanol and ethanol simultaneously in alcoholic beverages.

 

Keywords: forensic toxicology, ethanol, methanol, alcoholic beverages, GC-FID

 


References

1.        Gahamat, M. F., Rahman, M. M. and Safii, R. (2023). Prevalence and factors associated with alcohol use among Dayak adolescents in Sarawak, Malaysia. Malaysian Journal of Medicine and Health Sciences, 19(1): 215-223.

2.        Lourdes, T. G. R., Abd Hamid, H. A., Riyadzi, M. R., Rodzlan Hasani, W. S., Abdul Mutalip, M. H., Abdul Jabbar, N., Mat Rifin, H., Saminathan, T. A., Ismail, H. and Mohd Yusoff, M. F. (2022). Findings from a nationwide study on alcohol consumption patterns in an upper middle-income country. International Journal of Environmental Research and Public Health, 21; 19(14): 8851.

3.        Oh, C. -H. (2020). Simultaneous gas chromatographic quantitation of ethanol and methanol from beer. International Journal of Scientific & Technology Research, 9(2): 3249-3253.

4.        Sirhan, A. Y., Wong, R. C. S., Abdulra’uf, L. B., Aljabar, J. A., Mostafa, A. and Talhouni, A. (2019). Simultaneous determination of ethanol and methanol in alcohol free malt beverages, energy drinks and fruit juices by gas chromatography. Asian Journal of Agriculuture and Biology, 7(2): 183-189.

5.        Paine, A. J. and Dayan, A. D. (2001). Defining a tolerable concentration of methanol in alcoholic drinks. Human and Experimental Toxicology, 20 (11): 563-568.

6.        Tulashie, S. K., Appiah, A. P., Torku, G. D. and Wiredu, A. (2017). Determination of methanol and ethanol concentrations in local and foreign alcoholic drinks and food products (Banku, Ga kenkey, Fante kenkey and Hausa koko) in Ghana. Food Contamination,  4(14): 1-10.

7.        Muhammad Adil, Z. A., Nur Zawani, J., Hazariah, A. H., Rao, G., Zailiza, S. and Mohd Nasir, H. (2019) Methanol outbreak in the district of Hulu Langat, 2018. Medical Journal of Malaysia, 74(5): 413-417.

8.        Manning, L. and Kowalska, A. (2021). Illicit alcohol: Public health risk of methanol poisoning and policy mitigation strategies. Foods, 10(7): 1625.

9.        Pressman, P., Clemens, R., Sahu, S. and Hayes, A. W. (2020). A review of methanol poisoning: A crisis beyond ocular toxicology. Cutaneous and Ocular Toxicology, 39(3): 173-179.

10.     Gouda, A. S., Khattab, A. M. and Mégarbane, B. (2020). Lessons from a methanol poisoning outbreak in Egypt: Six case reports. World Journal of Critical Care Medicine, 9(3): 54-62.

11.     Mahdavi, S. A., Zamani, N., McDonald, R., Akhgari, M., Kolahi, A. -A., Gheshlaghi, F., Ostadi, A., Dehghan, A., Moshiri, M., Rahbar-Taramsari, M., Delirrad, M., Mohtasham, N., Afzali, S., Ebrahimi, S., Ziaeefar, P., Khosravi, N., Kazemifar, A. M., Ghadirzadeh, M., Farajidana, H. and Hassanian-Moghaddam, H. (2022). A Cross-sectional multicenter linkage study of hospital admissions and mortality due to methanol poisoning in iranian adults during the COVID-19 pandemic. Scientific Reports, 12(1): 9741.

12.     Son, H. S., Hong, Y. S., Park, W. M., Yu, M. A. and Lee, C. H. (2009). A novel approach for estimating sugar and alcohol concentrations in wines using refractometer and hydrometer. Journal of Food Science, 74(2): C106–C111.

13.     Debebe, A., Redi-Abshiro, M. and Chandravanshi, B. S. (2017). Non-destructive determination of ethanol levels in fermented alcoholic beverages using fourier transform mid-infrared spectroscopy. Chemistry Central Journal, 11(1): 27.

14.     Brereton, P., Hasnip, S., Bertrand, A., Wittkowski, R. and  Guillou, C. (2003). Analytical methods for the determination of spirit drinks. TrAC Trends in Analytical Chemistry, 22(1): 19-25.

15.     Stewart, L. E. (1983). Alcohol proof determination from absolute specific gravity (20°C/20°C) using oscillating u-tube digital density meter with programmable calculator. Journal of AOAC International, 66(6): 1400-1404.

16.     Pérez-Ponce, A., Garrigues, S. and de la Guardia, M. (1996). Vapour generation–fourier transform infrared direct determination of ethanol in alcoholic beverages. The Analyst, 121 (7): 923-928.

17.     Yarita, T., Nakajima, R., Otsuka, S., Ihara, T., Takatsu, A. and Shibukawa, M. (2002). Determination of ethanol in alcoholic beverages by high-performance liquid chromatography–flame ionization detection using pure water as mobile phase. Journal of Chromatography A, 976 (1-2): 387-391.

18.     Isaac-Lam, M. F. (2016). Determination of alcohol content in alcoholic beverages using 45 MHz benchtop NMR spectrometer. International Journal of Spectroscopy, 2016: e2526946.

19.     Nordon, A., Mills, A., Burn, R. T., Cusick, F. M. and Littlejohn, D. (2005). Comparison of non-invasive NIR and Raman spectrometry for determination of alcohol content of spirits. Analytica Chimica Acta, 548(1-2): 148-158.

20.     Pappas, C., Basalekou, M., Konstantinou, E., Proxenia, N., Kallithraka, S. and Kotseridis, Y. (2016). Evaluation of a Raman spectroscopic method for the determination of alcohol content in Greek Spirit Tsipouro. Current Research in Nutrition and Food Science Journal, 4: 01-09.

21.     Coelho de Oliveira, H., Elias da Cunha Filho, J. C., Rocha, J. C. and Fernández Núñez, E. G. (2017). Rapid monitoring of beer-quality attributes based on UV-Vis spectral data. International Journal of Food Properties, 2017: 1-14.

22.     Sisco, E. and Robinson, E. L. (2020). Determination of ethanol concentration in alcoholic beverages by direct analysis in real time mass spectrometry (DART-MS). Forensic Chemistry, 18: 100219.

23.     Wang, M. -L., Choong, Y. -M., Su, N. -W. and Lee, M.-H. (2003). A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography. Journal of Food and Drug Analysis, 11: 133-140.

24.     Caruso, R., Gambino, G. L., Scordino, M., Sabatino, L., Traulo, P. and Gagliano, G. (2011). Gas chromatographic quantitative analysis of methanol in wine: Operative conditions, Optimization and calibration model choice. Natural Product Communications, 6(12): 1934578X1100601.

25.     Gerchman, Y., Schnitzer, A., Gal, R., Mirsky, N., and Chinkov, N. (2012). A simple rapid gas-chromatography flame-ionization- detector (GC-FID) method for the determination of ethanol from fermentation processes. African Journal of Biotechnology, 11: 3612-3616.

26.     Baimatova, N., Ibragimova, O. and Zia, A. (2015). Sensitive determination of impurities in samples of vodka by gas chromatography with flame-ionization detection. Chemical Bulletin of Kazakh National University, 2(74): 3-12.

27.     Arslan, M., Zeren, C., Aydin, Z., Akcan, R., Dokuyucu, R., Keten, A. and Çekin, N. (2015). Analysis of methanol and its derivatives in illegally produced alcoholic beverages. Journal of Forensic and Legal Medicine, 33: 56–60.

28.     Stupak, M., Kocourek, V., Kolouchova, I. and Hajslova, J. (2017). Rapid approach for the determination of alcoholic strength and overall quality check of various spirit drinks and wines using GC–MS. Food Control, 80: 307-313.

29.     Charapitsa, S., Sytova, S., Korban, A., Boyarin, N., Shestakovich, I. and Čabala, R. (2018). The establishment of metrological characteristics of the method “ethanol as internal standard” for the direct determination of volatile compounds in alcoholic products. Journal of Chemical Metrology, 12(1): 59-69.

30.     Kostic, E., Vujovic, M. and Milosavljevic, B. (2021). Validation of a method for ethanol analysis in biological and non-biological samples and its toxicological application. Hemijska Industrija, 75(3): 175-183.

31.     Kirushanthi, A. and Srivijeindran, S. (2021). Validation of an analytical method using GC-FID to determine the ethanol in palmyrah alcoholic beverages. International Research Journal of Innovations in Engineering and Technology, 5(5): 101-104.

32.     Mansur, A. R., Oh, J., Lee, H. S. and Oh, S. Y. (2022). Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: A validated method for halal verification. Food Chemistry, 366: 130526.

33.     Abualhasan, M. N., Zaid, A. N., Jaradat, N. and Mousa, A. (2017). GC Method Validation for the Analysis of Menthol in Suppository Pharmaceutical Dosage Form. International Journal of Analytical Chemistry, 1728414.

34.     Briana, A. C. and Edward, S. (2024). Validation of a rapid GC–MS method for forensic seized drug screening applications. Forensic Chemistry, 41: 100609.

35.     Shehata, A., Askar, A., Rasheed, M., Zahrany, A., Kharraa, F. and Sowailem, S. (2024). Validation of a method for characterization of ethanol in water by HS-GC-FID to serve the traceability of halal measurements. Green and Sustainable Chemistry, 14: 17-28.

36.     Siarhei, C., Svetlana, S., Anton, K., Lidziya, S., Mikhail, Z., Vladimir, E., Sergey, L., Ina, M., Serge, V., and Natalia, Z. (2022). Intelligent use of ethanol for the direct quantitative determination of methanol in alcoholic beverages. Journal of Food Composition and Analysis, 114: 104772.